How to install cuda on ubuntu 22.04 or Linux Mint 21.2
On fresh install of the OS, I did the following to get it working.
- Find the CUDA driver version required for your GPU. I saw 535 from my (3060 RTX)[https://www.nvidia.com/download/index.aspx]
- Find the CUDA version that has that driver. I found 12.2 which matched 535 driver version
xx.x.x_535.xx.xx_linux
- In grub press e and type
nomodeset
beforequite splash
//unsure - ALT+F1. Login to tty
sudo service lightdm stop
wget https://developer.download.nvidia.com/compute/cuda/12.2.2/local_installers/cuda_12.2.2_535.104.05_linux.run
sudo sh cuda_12.2.2_535.104.05_linux.run
- Accept.
- Tick Driver, Toolkit, Demo
- INSTALL
- Unpon success. reboot.
- Append in
~/.bashrc
export PATH=/usr/local/cuda-12.2/bin${PATH:+:${PATH}} export LD_LIBRARY_PATH=/usr/local/cuda-12.2/lib64${LD_LIBRARY_PATH:+:${LD_LIBRARY_PATH}}
Check the installation.
## Step 1
$ nvcc --version
nvcc: NVIDIA (R) Cuda compiler driver
Copyright (c) 2005-2023 NVIDIA Corporation
Built on Tue_Aug_15_22:02:13_PDT_2023
Cuda compilation tools, release 12.2, V12.2.140
Build cuda_12.2.r12.2/compiler.33191640_0
## Step 2
$ nvidia-smi
Thu Dec 21 17:51:50 2023
+---------------------------------------------------------------------------------------+
| NVIDIA-SMI 535.104.05 Driver Version: 535.104.05 CUDA Version: 12.2 |
|-----------------------------------------+----------------------+----------------------+
| GPU Name Persistence-M | Bus-Id Disp.A | Volatile Uncorr. ECC |
| Fan Temp Perf Pwr:Usage/Cap | Memory-Usage | GPU-Util Compute M. |
| | | MIG M. |
|=========================================+======================+======================|
| 0 NVIDIA GeForce RTX 3060 ... Off | 00000000:01:00.0 On | N/A |
| N/A 55C P8 16W / 115W | 50MiB / 6144MiB | 7% Default |
| | | N/A |
+-----------------------------------------+----------------------+----------------------+
+---------------------------------------------------------------------------------------+
| Processes: |
| GPU GI CI PID Type Process name GPU Memory |
| ID ID Usage |
|=======================================================================================|
| 0 N/A N/A 1143 G /usr/lib/xorg/Xorg 45MiB |
+---------------------------------------------------------------------------------------+
## Step 3
$ git clone https://github.com/NVIDIA/cuda-samples.git
$ cd cuda-samples/Samples/1_Utilities/deviceQuery
$ make
$ ./deviceQuery
./deviceQuery Starting...
CUDA Device Query (Runtime API) version (CUDART static linking)
Detected 1 CUDA Capable device(s)
Device 0: "NVIDIA GeForce RTX 3060 Laptop GPU"
CUDA Driver Version / Runtime Version 12.2 / 12.2
CUDA Capability Major/Minor version number: 8.6
Total amount of global memory: 5938 MBytes (6226378752 bytes)
(030) Multiprocessors, (128) CUDA Cores/MP: 3840 CUDA Cores
GPU Max Clock rate: 1702 MHz (1.70 GHz)
Memory Clock rate: 7001 Mhz
Memory Bus Width: 192-bit
L2 Cache Size: 3145728 bytes
Maximum Texture Dimension Size (x,y,z) 1D=(131072), 2D=(131072, 65536), 3D=(16384, 16384, 16384)
Maximum Layered 1D Texture Size, (num) layers 1D=(32768), 2048 layers
Maximum Layered 2D Texture Size, (num) layers 2D=(32768, 32768), 2048 layers
Total amount of constant memory: 65536 bytes
Total amount of shared memory per block: 49152 bytes
Total shared memory per multiprocessor: 102400 bytes
Total number of registers available per block: 65536
Warp size: 32
Maximum number of threads per multiprocessor: 1536
Maximum number of threads per block: 1024
Max dimension size of a thread block (x,y,z): (1024, 1024, 64)
Max dimension size of a grid size (x,y,z): (2147483647, 65535, 65535)
Maximum memory pitch: 2147483647 bytes
Texture alignment: 512 bytes
Concurrent copy and kernel execution: Yes with 2 copy engine(s)
Run time limit on kernels: Yes
Integrated GPU sharing Host Memory: No
Support host page-locked memory mapping: Yes
Alignment requirement for Surfaces: Yes
Device has ECC support: Disabled
Device supports Unified Addressing (UVA): Yes
Device supports Managed Memory: Yes
Device supports Compute Preemption: Yes
Supports Cooperative Kernel Launch: Yes
Supports MultiDevice Co-op Kernel Launch: Yes
Device PCI Domain ID / Bus ID / location ID: 0 / 1 / 0
Compute Mode:
< Default (multiple host threads can use ::cudaSetDevice() with device simultaneously) >
deviceQuery, CUDA Driver = CUDART, CUDA Driver Version = 12.2, CUDA Runtime Version = 12.2, NumDevs = 1
Result = PASS
Hello World CUDA!
cat a.cu
#include <cuda.h>
#include <stdio.h>
__global__ void k(){
printf("hello %u!\n", threadIdx.x);
}
int main(void){
k<<<2,32>>>();
cudaDeviceSynchronize();
return 0;
}
nvcc a.cu && ./a.out
Other thoughts.
- Install the driver version from driver manager
- While cuda install just deselect the driver