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Abstract The Steiner Tree Problem (STP) is a well studied graph the-
oretic problem. It computes a minimum-weighted tree of a given graph such
that the tree spans a given subset of vertices called terminals. STP is NP-
hard. Due to its wide applicability, it has been a challenge problem in the 11th

DIMACS implementation challenge and the PACE 2018 challenge. Due to its
importance, polynomial-time approximation algorithms have been devised for
solving the STP. One of the most popular algorithms is by Kou, Markowsky
and Berman (KMB) which provides a 2-approximation to STP. In practice,
a näıve implementation of the KMB algorithm is prohibitively slow for large
graphs. Our goal in this work is to improve KMB algorithm’s practical util-
ity by parallelizing it on GPU and reduce its execution time on real-world
graphs. This parallelization faces several challenges due to the inherent ir-
regular nature of computation, as well as critical design decisions affecting
the algorithm choice and optimizations. We overcome these challenges with
interesting algorithmic observations and by exploiting parallelization within
sub-steps, and develop the first GPU-based efficient approach to computing
Steiner trees using KMB. We illustrate the effectiveness of our approach using
several graph benchmarks from the DIMACS Challenge, the PACE Challenge,
SteinLib, and SNAP. Our highly optimized GPU implementation achieves an
average 20× speedup over the CPU-sequential Open Graph algorithms and
Data structure (OGDF)’s KMB implementation. In addition to this, our op-
timized CPU implementation achieves an average 4× over OGDF’s KMB, the
only published open-source KMB implementation.
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1 Introduction

Steiner trees are generalizations of minimum spanning trees. Applications
of Steiner trees include very-large-scale integration (VLSI) design, network
routing, phylogenetic tree construction and vehicle routing [19]. In particu-
lar, Steiner trees are applied in placement and routing of components in the
design of printed circuit boards (PCBs), integrated circuits (ICs), and field
programmable gate arrays (FPGAs). To define the problem, consider a sim-
ple, undirected, connected and edge-weighted graph G(V , E, W , L) where
W : E → Z+

0 is the non-negative weight function, and L ⊆ V represents a set
of special vertices called terminals. The remaining vertices V \L are called non-
terminals or Steiner vertices. The standard notation of n = |V |, m = |E| and
additionally k = |L| is used throughout. Formally, STP is stated as follows:

Steiner Tree Problem (STP)

Input : Connected graph G(V,E,W,L), W :E→Z+
0 , terminals L ⊆ V

Output: Connected subtree T of G containing all the terminals
Goal : Minimize the sum of edge-weights of the tree T .

A minimal-connected subgraph (that is, a tree) of G that contains all
the terminals is called a Steiner tree T . The minimum weighted Steiner tree
is called the optimum Steiner tree. The goal of the Steiner Tree Prob-
lem (STP) is to compute a subgraph of G which contains terminals L and
the sum of the edge-weights in the subgraph is minimized. Note that the
edge-weights can be zero. When L = V , the STP specializes to the minimum
spanning tree (MST) problem, and when L = {u, v} then the STP special-
izes to the shortest u-v path problem. Both these problems can be solved in
polynomial-time. Further, it is known that for values up to |L| = log n, STP
can be solved in polynomial-time using dynamic programming-based parame-
terized algorithms [16,20].

Properties of Steiner trees. A graph may have multiple optimum Steiner
trees. If there are multiple shortest paths between two vertices (or terminals),
then the optimum Steiner tree is not unique. This can also be seen in Figure 1
with a and c as two terminals. In any optimum Steiner tree, all the leaf vertices
are terminals, but the converse need not be true. If the edge-weights of the
input graph are unique, then there exists a unique MST. However, this is not
true for STP even with two terminals (Figure 1).

One of the most fundamental differences between MST and STP is their
algorithmic complexity. An MST can be computed in polynomial time and
several algorithms have been proposed towards this (e.g., Prim’s, Kruskal’s,
and Boruvka’s). On the other hand, STP is NP-Hard [21] even on unweighted
graphs. The decision version of the optimization problem, that is, deciding
whether a graph has a Steiner tree with at most p Steiner vertices is NP-
Complete [21]. Since the STP is an important problem in several real-world
applications, for smaller graph sizes and for special graph classes, efficient
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Fig. 1 Example - Steiner tree on a graph with unique edge weights need not be unique.
For the above instance two Steiner tree are possible: {(a,b)(b,c)} and {(a,d)(d,c)}

exponential-time algorithms can be used to seek exact answers [12, 16]. Such
exact algorithms and parameterized algorithms face practical limitations at
scale. These limitations were explored in the 11th DIMACS implementation
challenge 2014 [26]. Due to the importance of the problem, STP was also a
focus of Parameterized Algorithms and Computational Experiments (PACE)
Challenge in 2018 [6, 7]. 1 million terminals.

A practical alternative way of dealing with the NP-hardness of STP is by
considering polynomial-time approximation algorithms [2,8,36,43,49]. One of
the most well-known algorithms is by Kou, Markowsky and Berman [29] which
provides a 2-approximation to STP. We refer to this elegant algorithm as the
KMB algorithm throughout the text. It computes a Steiner tree by performing
a set of shortest path computations followed by an MST computation. We
explain it in the next section, but briefly: on an input instance G(V , E, W ,
L), the KMB algorithm has three phases. The first phase computes the shortest
distance between every pair of terminals. The second phase builds a graph G′

over terminals, having edge-weights corresponding to the shortest distances
computed in the previous phase, and then computes an MST on G′. The last
phase substitutes for every MST edge in G′, the corresponding shortest path in
G to create a final graph G′′. This is clearly a subgraph of G but may contain
a cycle. So, the KMB algorithm finally computes the MST of G′′ to output as
a Steiner tree. This tree is proved to have weight at most twice the weight of
the optimum Steiner tree in G.

There are some instances in SteinLib [28] for which the optimum solutions
are still unknown. Such is the case also for PACE 2018’s heuristic track in-
stances. Further, on the graph instances where the optimum is known, the
state of the art implementations run for more than a few hours to output the
optimum (Section 3.3 in Bonnet and Sikora [7]). Despite the elegant formula-
tion of the KMB algorithm, it is time-consuming especially on large graphs,
which limits its practical use. Even in our setup, to output a Steiner tree,
an instance took 1145 seconds on the CPU. Our goal in this work is to ex-
ploit the power of GPGPUs and develop an efficient implementation of the
KMB algorithm to reduce its execution time on larger inputs. Unfortunately,
applying GPU-based parallelization to the KMB algorithm witnesses several
challenges. We tame these challenges by exploiting various invariants satisfied
by the Steiner trees as well as by the KMB algorithm.
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Contributions. This paper makes the following contributions:

– We develop the first GPU-based optimized implementation of the KMB
algorithm to compute 2-approximate Steiner trees. We illustrate the chal-
lenges faced in the parallelization and show how to exploit various proper-
ties of Steiner trees as well as of the KMB algorithm.

– Since single-source shortest path (SSSP) is a crucial building block for the
KMB algorithm, we demonstrate various GPU parallelization strategies
and optimizations that can accelerate single and multiple SSSP computa-
tion on undirected graphs.

– We illustrate the effectiveness of our parallelization using a suite of graphs
from the PACE Challenge as well as large real-world graphs. Our GPU-
based implementation achieves up to 62× (average 20×) speedup over
OGDF’s KMB [4] and it is on par with PACE 2018 winner [17] and OGDF’s
KMB on solution quality.

– We develop a CPU-based optimized implementation which is on-par with
other sequential implementations and achieves an average 4× speedup over
OGDF’s KMB [4,9].

GPU parallelization has hitherto been tried primarily on individual algo-
rithms. Via this work, we illustrate integrating algorithms (multiple SSSPs,
MSTs, and interfacing I/O conversions) which demand different paralleliza-
tion techniques. Our work has integrated GPU implementations of these al-
gorithms and we believe this is the first time such an approach has been
attempted. Various design choices mentioned in the context of KMB paral-
lelization (Section 3.1) would be useful in parallelizing other GPU implemen-
tations of NP-hard problems. Our work is that way one step closer to paral-
lelizing graph applications. We have released our code and sample inputs at
https://zenodo.org/record/4477087.

Outline. The rest of the paper is organized as follows. Section 2 explains the
sequential KMB algorithm. Section 3 describes our approach towards paral-
lelizing KMB. Section 4 describes various GPU optimizations. Section 5 quan-
titatively evaluates our approach using real-world benchmarks. Section 6 qual-
itatively compares with and contrasts against the relevant related work, and
Section 7 concludes.

2 Sequential KMB Algorithm

Algorithm 1 presents the sequential KMB algorithm to bring out the bottle-
necks in exploiting parallelization. It has three phases: (i) compute the shortest
paths between all pairs of terminals, (ii) using the computed shortest distances,
build another graph with edge-weights as the shortest distances and compute
an MST on this new graph, and (iii) replace each MST edge in the new graph
by the corresponding shortest path in the original graph and compute an
MST in this graph, which is a Steiner tree of the original graph. We explain
the phases below.

https://zenodo.org/record/4477087
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2.1 Data Structures

The algorithm starts with the input graph G and computes two more auxiliary
graphs G′ and G′′ before outputting the Steiner tree. We use adjacency list for
holding the graphs and a map to store the weights of input graph and inter-
mediate graphs. While G′ is a complete graph with all the terminal vertices,
G′′ is a subgraph of G We use three arrays d, p, and PArray. Two n-sized
arrays: distance d and parent p are used to hold the complete result of one
SSSP from a terminal. These two arrays are reused across SSSPs. An (n× k)-
sized array called PArray that holds all the parent information computed by
all the SSSPs. This aggregate information is required in the second and the
third phases.

2.2 Algorithm

Input: Graph G(V,E,W,L) such that W : E → Z+
0 and set of terminals L ⊆ V

Output: A 2-approximate Steiner tree T ′′(VT ′′ , ET ′′ ) such that VT ′′ ⊇ L
1 G′(L,E′ = φ);
2 G′′ = φ;
3 for u ∈ L do
4 for v ∈ L do
5 Puv = ShortestPath(u, v);
6 W ′(u, v) = |Puv |;
7 end

8 end
9 T ′=MST (G′(L,E′),W ′) ;

10 for (u, v) ∈ E′(T ′) do
/* Add vertices and edges of Puv */

11 G′′ = G′′ ∪ Puv

12 end
/* Let G′′(V ′′, E′′) subgraph of G, */

/* Hence V ′′ ⊆ V and E′′ ⊆ E */

13 T ′′ = MST(G′′(V ′′, E′′),W );
14 Output Post-process(T ′′);

Algorithm 1: Sequential KMB algorithm

The first phase computes the shortest path distances between every pair
of terminals of G (for loop at Line 3). This operation is achieved by running
multiple SSSPs with source vertex as each terminal. Each SSSP populates
two n-sized arrays: distance d and parent p. The d-array stores the shortest
distance of each vertex from the source terminal, while p stores a parent in
the SSSP tree (note that we say a parent rather than the parent, since there
could be multiple shortest paths to a vertex; any one of them can be stored).
For k SSSPs, a large PArray of size n × k holds all the parents. The graph
G′ is smaller, with the terminals L forming its vertex set. For each pair of
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Fig. 2 Execution steps of KMB algorithm on an instance, where (•) dark vertices are
terminals and (◦) light vertices are non-terminals.

terminals (u, v), weight of the edge u—v in G′ is the shortest-path distance
between (u, v) computed in the previous step (at Line 6).

The storage allocated for distance d and parent p arrays are reused across
the SSSP function calls for different terminals. However, p array is copied into
PArray, and the weights W ′ in the graph G′ are computed incrementally
using the distance array d. Since, we know G′ is a complete graph of terminal
vertices, bookkeeping W ′ is easier. The KMB algorithm now computes an MST
T ′ of G′ (Line 9). The last phase in the algorithm constructs a new graph G′′

(for loop at Line 10). G′′ is constructed from the MST T ′ by replacing each
edge u—v in T ′ by a shortest u− v path using the PArray array. This crucial
step ensures that G′′ has all the terminals from G, all the relevant edges, as
well as possibly some non-terminals from G, which are on the shortest path
between two terminals. Finally, we compute an MST T ′′ of G′′. T ′′ is post-
processed to ensure that all the leaves are terminals, and then output as a
Steiner tree of G (Line 13). Without this final step, the solution quality is
affected marginally. Thus, there is a trade-off in spending time in this final
step and the solution quality achieved. In our implementation, we omit this
last step in favor of the execution time. It is well-known [29] that this Steiner
tree is a 2-approximation to the optimum Steiner tree.

For a better understanding of the algorithm, we run the algorithm on an
example as shown in Figure 2. It is sufficient for this explanation to refer to
the upper part of Figure 2(a) alone. The three phases are shown as five steps
for visualization purpose. The steps from left to right in Figure 2 (i, ii, iii, iv,
v) show the resultant graphs at the end of individual steps.

Step (i) shows the initial graph G with three terminals represented as dark
vertices (•) and four non-terminals as light vertices (◦). Step (ii) computes
the shortest paths between every pair of terminals (a, b), (b, c) and (a, c) rep-
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resented using thick, dotted and dashed lines respectively. Note that if there
are multiple shortest paths, any one of them can be chosen. This ends phase
one.

Step (iii) builds G′ which is a complete graph on the terminal vertices, such
that its edge-weights are its corresponding shortest-path distances from the
previous step. G′ happens to be a triangle with all edges-weights as 10. Step
(iv) computes the MST on G′ which results in (a, b) and (b, c) edges (shown
as highlighted). This completes phase two.

Step (v) finally builds G′′ using path vertices along the MST edges (a, b)
and (b, c) resulting in {(a, f), (f, b)} and {(b, g), (g, c)}. It then computes an
MST on G′′. Note that the final MST becomes unnecessary in our example as
G′′ is already a tree. The Steiner tree value is 20.

The lower (b) part of Figure 2 is an execution of the same KMB algorithm
except at Step (ii) (b) where the shortest path for (b, c) via d is chosen, resulting
in a Steiner tree for G whose value is 15 (incidentally, it happens to be the
optimum). Suppose at Step (iv) (b) the MST edges were different {(a,b),(a,c)}
or {(a,c),(b,c)} instead of {(a,b),(b,c)} then KMB will not result in an optimal
value. It is due to this reason a parallel KMB algorithm may output a different
Steiner tree compared to its sequential counterpart, or across different parallel
runs.

3 Parallelizing the KMB Algorithm

We identify the challenges in parallelizing the KMB algorithm, and present
the details of how we deal with them.

3.1 Challenges in Parallelization

Algorithmic Choice. KMB involves computing the shortest distance be-
tween every pair of terminals. This is done by computing the single-source
shortest path (SSSP) from each terminal. A natural choice is to use Dijkstra’s
algorithm for SSSP, since it is work-efficient in the sequential setting [11].
However, in the parallel setting, it also suffers from low concurrency due to
management of min-heap as the underlying data structure and due to not
having enough independent work. The heap property needs to be maintained
across iterations and updates, which poses hindrance to concurrent execu-
tion [30]. Hence, Dijkstra’s algorithm is unsuited in the presence of thousands
of threads on GPUs. In contrast, Bellman-Ford algorithm exhibits significantly
better parallelism, as threads together simply relax (Relax operation as in
CLRS [11]) all the edges in every iteration. On the negative side, Bellman-
Ford algorithm performs more work than Dijkstra’s algorithm on the same
graph. However, there is no maintenance of a complex data structure. There-
fore, we choose to use Bellman-Ford algorithm for SSSP computation, with
the expectation that the parallelism benefits will outweigh the extra work
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done (which happens in practice). Former research has also parallelized SSSP
computation using variants of Bellman-Ford algorithm. This design choice il-
lustrates the trade-off between work-efficiency and concurrency offered by the
two algorithms.1

Early SSSP Halt. Without using the SSSP-halt, in general, an SSSP com-
putation from a source s calculates the distance from s to all the remaining
vertices. This is done also in the state-of-the-art implementations [4]. We ob-
serve that the KMB algorithm needs to find shortest paths between only the
pairs of terminals. Therefore, the SSSP computation can be halted as soon as
the distances of all the terminals from s are found, since it is only the ter-
minals whose shortest path distances are required for building the graph G′.
Implementing this early SSSP halt in the sequential setting can be achieved by
exploiting the Dijkstra property along with the min-heap data structure. The
Dijkstra property states that when a vertex is extracted from the min-heap,
its distance is settled. Thus, as soon as all the terminals are extracted from
the heap, the SSSP computation can be early-terminated (for that source).
Interestingly, such a property is not satisfied by parallel Bellman-Ford algo-
rithm (there is no min-heap). Therefore, we need to trade off this optimization
if we need to exploit more concurrency. In our experiments, we observe that
concurrency on GPU offers more benefits than exploiting this property on the
CPU. As an optimized baseline, we enhance our sequential CPU implementa-
tion with this early SSSP halt technique. PACE challenge remarked [7] that
any 2-approximation algorithm would require more than 30 minutes. This was
indeed the case on the largest input instance in our setup for the KMB imple-
mentation of OGDF (which we call as JEA KMB). In contrast, our sequential
CPU implementation terminates within 20 minutes due to early SSSP halt.

Avoiding MST Computation. The final step of Algorithm 1 is the com-
putation of minimum spanning tree in G′′. Although theoretically G′′ can be
arbitrary, empirically, we observe that G′′ is often very sparse. Therefore, we
can avoid MST computation altogether, if G′′ is a tree. This can be quickly
validated by checking if |E′′| = |V ′′| − 1. In our graph-suite, 5 out of 14 test
case did not require the last MST computation. To give a larger picture, 72 of
the 100 public heuristic instances in the PACE challenge witness their G′′ to
be a tree.

Design Choice in Parallelizing. Overall KMB algorithm (Algorithm 1)
can be parallelized in multiple ways. Figure 3(i) shows the computation flow
for sequential KMB. It runs multiple SSSPs sequentially, followed by two in-
vocations of MST. In inner-parallel KMB (Figure 3(ii)), multiple SSSPs are
executed sequentially (as in the serial version), but each SSSP is internally
parallelized on GPU. This allows us to take advantage of various advances in
parallel graph algorithms [23,33,38].

1 One may further explore algorithmic variants such as ∆-stepping, which may suit their
setup.
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Fig. 3 Design choices in parallelizing the KMB algorithm (k is the number of terminals)
(i) Sequential (ii) Inner-parallel (iii) Outer-parallel (iv) Both-parallel

In contrast, the outer-parallel KMB version (Figure 3(iii)) runs multiple
SSSPs in parallel, but each SSSP internally is sequential. A distinct advantage
of inner-parallel KMB (over the outer-parallel version) is reduced memory-
requirement, as the auxiliary storage can be reused for the next SSSP. Further,
each MST computation can be individually parallelized. This is aided by our
careful algorithmic choice (e.g., Bellman-Ford). On the other hand, an outer-
parallel design allows us to use Dijkstra’s algorithm, and retain the advantage
of early SSSP halt (as discussed earlier). Multiple SSSPs can be concurrently
executed using CUDA streams on GPUs. There is also a possibility of both-
parallel wherein p parallel SSSPs are executed simultaneously where each SSSP
itself is parallel (Figure 3(iv)). Running multiple kernels in parallel, beyond a
point, may necessitate reduction in the number of resources (such as registers)
available per kernel. Further, fixed-point now needs to be across kernels, which
demands modification to management of fixed-point flags, as well as handling
synchronization issues across kernels. The storage requirement is also high,
as the results of multiple SSSPs must be simultaneously stored. Therefore,
although theoretically feasible, outer-parallel and both-parallel are ill-suited
for KMB on GPUs. However, we have implemented both-parallel in such a way
that the concurrent SSSPs can be fine-tuned without exceeding the memory
limit on GPU. In our implementation, we use the inner-parallel approach and
both-parallel (cf. Section 4.2.1).

Graph Creation and Representation. The input graph G does not un-
dergo updates. We store it in the compressed sparse-row (CSR) format [23],
which is amenable to GPU-based parallelization as well as CPU-GPU trans-
fer. Graphs G′ and G′′ are created by the intermediate steps of the KMB
algorithm. The vertex set of G′ consists of all the terminals, which are also
available after reading the input for G. However, the edge-weights W ′ for edges
in G′ are based on the shortest distances across terminals, which are computed
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using multiple SSSPs. In G, the vertices are conveniently numbered from 0 to
n−1. However, G′ poses a non-triviality (which we have not observed in other
graphs algorithms): the terminal vertices could be arbitrary, and need not be
numbered from 0 to k − 1. The non-contiguous range of terminal identifiers
creates issues while allotting threads to vertices as well as in memory allo-
cation and mapping. We address this implementation issue by maintaining a
mapping from terminals to a unique number from 0 to k − 1 for MST on G′.
Interestingly, a similar implementation challenge is posed by G′′ as well, as it
is a subgraph of G, having fewer than n vertices. Further, G′′ needs to be built
during algorithm execution (unlike static G constructed prior to running the
algorithm) using the MST from G′ and the shortest paths from SSSPs on G.
To aid parallelism, we build both G′ and G′′ in the CSR format. On the other
hand, unlike in G′, the weights for G′′ are the same as those in G, and hence
need not be recomputed. Also, since those do not change dynamically, we can
reuse weight information W for G′′ as well. There is a small overhead involved
in the construction of the CSR format for G′ and G′′, however it is negligible
compared to the overall execution time.

Capturing Path Vertices. To construct G′′, the KMB algorithm must store
the vertices in the shortest path between each pair of terminals. This demands
an unknown amount of storage on the GPU which becomes large for large
graphs. In an extreme case, the graph is a path and nearly all the vertices
are terminals. In such a case, Θ(n2) space is needed for storing all the paths.
Similarly, at the other extreme, if the graph is denser, O(d×n) space is required
for the storage, where d is the graph diameter. In both the cases, we need either
more space or additional work to estimate the storage. The shortest paths are
data-dependent, and hence the amount of storage for storing paths cannot be
computed a priori without additional overhead, other than some weak upper
bounds. To address this issue, we make a design decision to not explicitly
store the path vertices. Instead, we store only the parent array for the SSSP
at each terminal, and construct the paths whenever needed. The paths can be
created by traversing the parent for each vertex recursively up to the source
terminal (from a node to its parent, and then to the parent’s parent, and so
on). This brings the storage cost to a deterministic one word per vertex, and
allows easy storage management on the GPU. This is also sufficient for the
KMB algorithm. It is noteworthy to mention that an all-pairs shortest path
algorithm maybe used to perform phase one. However, to contain the space
required with bare-minimum data structure, aiding faster KMB execution, we
decided to use multiple SSSPs.

Updating Parent Array. Remembering the parent is crucial for finding the
shortest path. However, updating the parent during a successful relax opera-
tion is challenging in the parallel setting due to a possible data race. When
two or more threads relax a common neighbor, the neighbor’s parent must be
changed only for that thread which relaxed the distance to the minimum.

For instance, consider Figure 4. Let thread ti operating from vertex ui relax
the distance of vertex v to some value, say 100. At the same time, let another
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thread tj operating from vertex uj relax the distance of the same vertex v to
some other value, say 120. Clearly, v’s distance should be updated to 100 and
its parent should be ui. The distance update is achieved using atomicMin, but
the two updates are not atomic (distance and parent). Hence, in absence of
a safety mechanism, v’s distance may be correctly set to 100, but due to the
data race, the parent may be wrongly set to uj . We discuss how we overcome
this challenge in Section 4.1.

3.2 A Parallel Implementation of KMB

Incorporating various design choices discussed so far, we implement the GPU
version of the KMB algorithm using parallel subroutines for SSSP and MST.
A single SSSP computation from a terminal is parallel, while multiple SSSPs
are executed sequentially (recall inner-parallel in Figure 3).

The graph is represented in the compressed sparse row (CSR) format, which
is almost a standard practice on GPUs. The inputs to the SSSP are a source
vertex (terminal) and the CSR arrays: meta array, adjacency list, and weight.
The SSSP computation outputs two arrays, namely, distance d and parent p
for every invocation from a terminal u. These arrays are allocated on the GPU
of size equal to the number of vertices in G. The values of the distance and
the parent arrays are copied to the host memory at the end of each iteration.
More importantly, it is needed for computing the weight function and paths
for building G′ and G′′ respectively. The storage space allocated for arrays
d and p are reused on the GPU for the next invocation, thus saving space.
As discussed earlier, the implementation cannot store complete paths due to
unknown as well as arbitrarily large amount of memory requirement, as there
are O(k2) paths to be remembered, (k is the number of terminals in G). We
note that we require the paths information only for k − 1 times, that is, the
number of edges in the MST T ′. Therefore, it is needed to trade off the time
spent on computing the shortest path vertices using parents, instead of storing
all the paths.

We present the parallel implementation of KMB in Algorithm 2, which at
the high level, is similar to its sequential counterpart from Algorithm 1. From
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Input: Graph G(V,E,W,L),W : E → Z+
0 and terminals L ⊆ V

Output: A 2-approximate Steiner tree T (VT , ET ) such that VT ⊇ L
1 for u ∈ L do
2 parallel SSSP(G,W,L, u);
3 Compute W ′ incrementally;

4 end
5 T ′ = parallel MST(G′,W ′);
6 Construct G′′ using shortest paths;
7 T ′′ = parallel MST(G′′,W );
8 return T ′′;

Algorithm 2: Parallel KMB algorithm

the GPU implementation perspective, the main program along with its kernel
are presented in Algorithms 3 and 4 respectively.

The SSSP kernel is launched (Line 3 of Algorithm 3) with n threads in
total and more precisely, with at most 512 threads per thread-block (set after
empirical tuning), where n is the number of nodes in G. For an SSSP from each
terminal u, the corresponding arrays are defined as follows: du and pu. Before
every launch of the kernel, du and pu arrays along with source terminal-vertex
u have to be initialized. Here, iterate is the fixed-point variable. Every thread
operates on a vertex u and performs the relax operations on its neighbouring
vertices. The source vertex u’s distance d[u] is set to zero and rest as infinity
during the initialization step. Relaxing of a neighbour is performed atomically
using atomicMin CUDA function. During the relaxation, we also update the
parent array pu. Whenever a successful relax happens, we also update the
fixed-point variable iterate. This variable is checked from the main program.
If no vertex undergoes relaxation, then it means all the vertices from that
source are saturated and have reached their final distances.

Input: Graph G(V,E,W,L) such that W : E → Z+
0 , source u

Output: Distance d[n] and Parent p[n]
1 repeat
2 INIT-KER<<<...>>>(u, du, pu, n);
3 SSSP-KER<<<...>>>(..,u, du, pu, iterate, n);
4 CopyTo(DArray, du ); // Device → Host
5 CopyTo(PArray, pu); // Device → Host
6 CopyTo(hIterate, iterate); // Device → Host

7 until not hIterate;

Algorithm 3: Custom SSSP Computation

3.3 Analysis of Parallel implementation

The correctness of our parallel KMB directly follows from the correctness of the
KMB algorithm. One of the prominent ways to analyse a parallel algorithm is
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1 tid = .. // compute tid. Also note tid = u;
2 if tid < n then
3 for v ∈ adjacent[tid] do // Using CSR arrays visit the neighbours of u
4 // Relax Operation (tid, v, du)
5 newCost = du[v] +W (tid, v);
6 old = du[v];
7 if newCost < du[v] then
8 Atomic-MIN(du[v], newCost);
9 end

10 // Updates Parent array
11 if du[v] < old then
12 // Atomic-MIN is success
13 pu[v] = tid;
14 iterate = true;

15 end

16 end

17 end

Algorithm 4: SSSP-KER(..,u, du, pu, iterate, n)

through the work-span framework [1]. The work of an algorithm corresponds to
the total number of primitive operations performed by an algorithm, whereas
the span corresponds to the longest sequence of dependencies in the computa-
tion. A parallel algorithm is said to be (asymptotically) work-efficient [1] if the
work performed is asymptotically same as that of the time of the best-known
sequential algorithm for the same problem. The total time of KMB depends
on the number of terminals k, the time taken by SSSP, and that by MST. In
particular, the total time is O(k × SSSP + 2×MST ). In the sequential set-
ting, the use of efficient algorithms results in O(km log n+ k2 log k +m log n)
running time. A majority of the time is dominated by the first part of the
closed-form expression, i.e., SSSP computation. In Table 1 we compare single-
parallel Bellman-Ford (BF) algorithm with inner-parallel and both-parallel
KMB. The work-complexity and span of single parallel Bellman-Ford (BF)
algorithm is O(mn) and O(n log n) respectively [1, 11]. However, in our case,
we use inner-parallel (recall Figure 3(ii)) to perform k BF steps one after the
another. Hence, both work and span get multiplied by a factor of k (second
row in Table 1). On the other hand, theoretically, both-parallel is achieved by
performing k BF steps in parallel for which the work is k × O(mn) whereas
the span remains as O(n log n), same as the single BF algorithm (fourth row).
Therefore, the maximum total parallelism (that is, work

span ) possible using these

parallelism approaches is Θ(km/ log n). For the inner-parallel approach, the
possible parallelism is Θ(m/ log n) which is lesser than both-parallel. Per-
forming 2 SSSP in parallel requires k/2 BF steps, which has parallelism of
Θ(km/ log n), same as that of both-parallel (third row). Note that although
highly concurrent, the both-parallel approach has a high memory requirement
too, which is prohibitive for large graphs on GPUs.

Discussion. While there exist several studies optimizing parallelization of a
single primitive computation (such as breadth-first search, shortest paths com-
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Algorithm type Work Span #SeqSteps
SSSP 1× Bellman-Ford O(mn) O(n logn) -
KMB k× Bellman-Ford (inner-parallel) k ×O(mn) k ×O(n logn) k
KMB 2× Bellman-Ford (both-parallel) 2×O(mn) O(n logn) k/2
KMB k× Bellman-Ford (both-parallel) k ×O(mn) O(n logn) 1

Table 1 Complexity analysis of inner-parallel and both-parallel

putation, page rank and triangle counting), our work involves building upon
such graph primitives to design an efficient higher-level algorithm implemen-
tation (similar to computation of betweenness centrality). Such algorithms not
only pose different challenges, but also offer different possibilities towards par-
allelization (as discussed in the previous subsection). Our work is that way
one step closer to parallelizing graph applications.

4 GPU KMB Optimizations

SSSP plays a central role in the KMB algorithm. Cumulatively, it is also the
most compute-intensive and time-consuming step of KMB. Therefore, opti-
mizing the SSSP computation is crucial towards an efficient Steiner tree com-
putation. In this section, we describe various methods to optimize SSSP com-
putations. They target three important aspects of the GPU-based processing:
synchronization, computation, and memory.

4.1 Synchronization Optimizations

There are two ways of relaxing an edge: push-based and pull-based. In a push-
based approach, the distance propagation is sent to the neighbouring nodes.
Thus, each vertex u (in turn, each thread) updates the distances of its neigh-
bours. Note that each thread processes the neighbours of its assigned vertex
sequentially.

1 tid = .. // compute tid;
2 if tid < n then
3 for v ∈ adjacent[tid] do // Using CSR arrays visit the neighbours of u
4 // Relax Operation (tid, v, du)
5 newCost = du[u] +W (v, tid);
6 if newCost < du[u] then
7 du[u] = newCost ;
8 pu[u] = tid;
9 iterate = true;

10 end

11 end

12 end

Algorithm 5: PULL-SSSP-KER(..,u, du, pu, iterate, n)
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In a pull-based approach, on the other hand, a vertex receives distance
information from its neighbors and updates it locally as shown in Algorithm 5.
In other words, each thread or a vertex u updates its own minimum distance
d[u] using the neighbors. Irrespective of push vs. pull approach, since the same
vertex may be the source for one thread and target for another, there may be
a read-write dependency. However, with the use of atomics (explicitly in the
push-based and implicitly in the pull-based approach), algorithmic progress
can be achieved leading to the fixed-point. As an additional note, in both
pull-based and push-based approaches, all the vertices are processed until the
fixed-point is reached which is called as topology-driven approach [38].

Parent Update. In a push-based approach, two or more vertices may up-
date a common neighbour. So threads need to use atomicMin primitive to
update neighbour’s distances. KMB also needs the parent update. But as
discussed earlier in Figure 4, this poses a challenge, as distance and parent
updates together are not atomic. While this issue can be addressed using a
double compare-and-swap (DCAS) or using a simulated lock mechanism on
GPUs, there are portability or overhead issues respectively with the solutions.
Pull-based approach offers a much more elegant solution. In the pull-based
approach, no atomic instruction is used while updating distances (Line 7 in
Algorithm 5). This occurs because the data of a vertex is being written by
only one thread. Thus, updating the parent array also can be readily done
by the same owner thread – without requiring a DCAS or a lock mechanism.
Further, as we discuss shortly, we observe that the pull is more versatile than
the push and allows other optimizations to be combined.

We would like to emphasize that this use-case (set of pros of pull over push)
has not been highlighted before in the GPU literature on graph algorithms (to
the best of our knowledge). In fact, push vs. pull has been projected as an in-
cremental performance difference [25, 44]. However in KMB, the performance
implications of the difference get so much amplified that the pull-based ap-
proach is practically inevitable. Merrill et al. [37] do mention about parent
update in the context of BFS, but in level-synchronous BFS, it does not mat-
ter which parent is recorded at a level out of the multiple possible candidates.
Hence, the above issue does not arise. In contrast, SSSP necessitates that the
distance and the corresponding parent must be rightly recorded. Even the
state-of-the art SSSP for GPUs, Gunrock [47], has the same issue with updat-
ing predecessor/parent array because of the data race. The Gunrock developers
mention this in the release notes of v1.0 [22] and list it as a known issue. The
pull-based approach has overcome the challenge for us and we believe that can
be applied for Gunrock’s SSSP as well.

4.2 Computation Optimizations

We optimize KMB’s computation by (i) using a p-SSSP (ii) a data-driven
approach, (iii) computation unrolling, (iv) storing the last state of the com-
putation, and (v) modeling the computation using edges.
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Fig. 5 Initialization of distance array d in double-barrel computation.

4.2.1 p-SSSP

Double-Barrel. While an individual SSSP is executed sequentially, we pro-
pose to perform multiple SSSPs also in parallel (cf. Figure 3 (iv)). Such a setup
can utilize parallelism on both fronts, make judicious use of the available mem-
ory, and utilize threads better. We implemented this p-SSSP technique, which
has the potential to improve the overall execution time. For exposition pur-
pose, we present it below for running two SSSPs in parallel (that is, p = 2,
hence the name Double-Barrel).

Consider two SSSPs from different sources, namely s1 and s2. To simul-
taneously accommodate distance and parent values from two SSSPs, we need
to double the sizes of d and p arrays i.e 2n. There is a slight modification
in the initialization step: both d[s1] and d[n + s2] are set to zero as shown
in Figure 5. No explicit modification is required to the existing kernel. The
kernel is launched with 2n threads and executed till a fixed point. At end of
fixed point, the entries 0 to n− 1 of the distance array d hold the source s1’s
shortest-path distances, and n to 2n− 1 hold the entries for s2 as the source;
similarly for parent array p. Two points to be noted about the Double-Barrel
are (i) to take care of odd number of iterations, and (ii) that one SSSP may
complete before the other.

Double-barrel computation can be extended to p-SSSP, which performs
multiple concurrent SSSPs, leading to the both-parallel approach illustrated
in Figure 3 (iv). Assume that each of the p SSSPs starting from p different
sources is stored in an array source[]. We need pn-sized arrays for distance
and parent. The initialization step involves setting d[ni + sources[i]] = 0 for
i ∈ [0, p). All the p SSSP computations read the common CSR array and
modify their distance and parent chunks with a specific offset. Here again,
the last iteration must be handled carefully to avoid array-index out-of-bound
errors if the number of terminals is not a multiple of p.

We observe that p-SSSPs performed better than a pull-based SSSP in KMB
(more in Section 5.4.2).
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4.2.2 Data-driven Processing

So far, we discussed only a topology-driven approach, wherein each vertex is
assigned to a thread. However, a data-driven processing may be efficient for
certain irregular codes [38]. The data-driven approach improves work-efficiency
because only those vertices whose distances were updated in the previous
iteration are acted upon in the current iteration. This can significantly reduce
the number of threads launched as well as the total amount of work done. A
data-driven approach demands a worklist-based processing. Management of
worklist incurs overhead as it is shared across all the active threads. Thus,
the benefits due to work-efficient processing need to outweigh the worklist
maintenance overheads. In our experiments with multiple SSSPs, across all the
graphs, we observe that a data-driven approach is more expensive than all the
CSR-based topology-driven approaches, except the edge-list based processing
(more details in Section 5.4.2).

4.2.3 Controlled Computation Unrolling

For faster fixed-point computation, it is imperative to propagate an updated
distance to its neighbors early. On the other hand, a lazy approach wherein a
distance is not propagated immediately, may reap benefits by not propagating
an intermediate value. With this definition, the typical topology-driven ap-
proach is lazy, as it awaits another iteration to propagate values from neighbors
to the second level neighbors. For the best results, a balance between the two
extremes (lazy or eager) is needed. Controlled computation unrolling achieves
this by adding small eagerness into the traditional lazy topology-driven pro-
cessing. In particular, when a vertex finds its distance updated, the corre-
sponding thread propagates it to its neighbors immediately, without awaiting
another kernel invocation. Thus, the second-level neighbors may receive their
updated values faster, in the current iteration itself. Such a processing bears
the potential of improving the overall information propagation in the graph,
and compute the fixed-point faster. One may get more eager and propagate
to the third-level neighbors, but note that this eager processing adds sequen-
tiality to the individual thread processing. We identify three ways to perform
computation unrolling:

– ∆2: In this approach, the usual ∆ loop going over the neighbors (for-
loop at Line 3 in Algorithm 4) is replaced by a nested loop iterating also
through the neighbors of neighbors. It resembles a push-within-push ap-
proach (Section 4.1). The work-done is ∆2 where ∆ is the max-degree of
the graph.

– 2∆: A similar effect can be achieved using two sibling loops wherein, the
first pulls min-distances from the neighbors, and the second pushes those
to the neighbors. This resembles a pull-then-push or pull-push approach.
The work-done is 2∆.

– t∆ or t-pull: In this approach, both the sibling loops can be either pull
or push. In our setup, we rely on pull because it helps in overcoming the
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parent update problem (as discussed in Section 4.2.2). The pull approach
can be generalized to a t-pull.

In our experiments, we observe (in Section 5.4.2) that 2∆ and t-pull ap-
proaches outperform ∆2. Further, a suitable t (typically, 3 or 4) outperforms
the 2∆ approach, indicating a better balance between the eager and lazy
processing. Controlled computation unrolling optimization also outperforms
double-barrel SSSP optimization.

4.2.4 Memoization

To help accelerate the processing of the next iteration, the current iteration
stores a small amount of information, in particular, the edge from the parent
neighbor which set the current node’s distance. This way, the next iteration
can start from that edge and move forward (instead of always starting from
the first edge). Note that the processing still needs to process all the neighbors,
needing a wrap-around from the last to the first edge (resembling a circular
queue). The performance of this optimization is similar that of pull-based
approach.

4.2.5 Edge-based Processing

Topology-driven implementation can be implemented in a vertex-based or
edge-based manner. In the latter, each thread operates on an edge or a group of
edges. The advantage of edge-based processing is load-balance across threads,
across warps, and across thread-blocks. On the flip side, edge-based process-
ing decouples neighbors of the same vertex. Hence, certain optimizations (such
as memoization) cannot be performed. Further, synchronization requirements
may increase, since compared to a vertex-based processing, more threads op-
erate on a vertex. In our experiments, we observe that the vertex-based pro-
cessing outperforms the edge-based processing on CSR based topology-driven
implementations.

4.3 Memory Optimizations

Programmable shared memory of a GPU helps in quick storing and reading of
information. However, näıvely moving data to shared memory does not help
– there must also be a reuse. Interestingly, our proposed t∆ approach has
repeated usage of distance values. We exploit shared memory for three-level
loop unrolling in 3∆ or 3-pull approach (Section 4.2.3). The three consecutive
for loops run over the same adjacency list and the weights array, thrice.
With 512 threads per block, we have at most 24 words to store per thread
in shared memory such that the 48KB shared memory per thread block is
not overflown. We store the CSR adjacency list into shared memory when the
degree of that vertex is 24 or smaller. In our experiments, we observe that the
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t# Graph n m k
OPT
(×106)

AvgD ∆ AvgWt
MaxWt
(×103)

t1 T3-137 97,928 128,632 902 11.300 2.63 14 2,486 271
t2 T3-163 117,756 165,153 1879 13.391 2.81 16 1,938 271
t3 T3-181 135,543 201,803 3033 20.086 2.98 16 1,796 258
t4 T3-183 120,866 187,312 3224 24.998 3.10 9 2,349 271
t5 T3-185 66,048 110,491 3343 793.246 3.35 16 103,011 21,510
t6 T3-187 63,158 107,345 3458 863.275 3.40 9 138,645 53,890
t7 T3-189 172,687 255,825 3902 40.927 2.96 10 2,826 271
t8 T3-191 85,085 138,888 3954 977.020 3.26 9 91,279 33,666
t9 T3-193 17,127 27,352 4461 184.908 3.19 4 20 0.126
t10 T3-195 89,596 148,583 4991 1,406.041 3.32 10 127,022 25,865
t11 T3-197 235,686 366,093 6313 51.655 3.11 14 2,376 271
t12 lin37 38,418 71,657 172 0.099 3.73 4 56 0.198
t13 alue7080 34,479 55,494 2344 0.062 3.22 4 9 0.013
t14 Deezer-HR* 54,573 498,202 3000 ? 18.26 420 1 0.001

Table 2 Benchmark graphs and their characteristics.
Note: AvgD is average degree. ∆ is the maximum degree. Similarly, AvgWt and MaxWt
are average edge-weight and maximum edge-weight respectively. ∗: For t14, given unit edge-
weights and 3000 terminals were chosen randomly. t14’s OPT value is unknown.

3-pull with shared memory optimization performed significantly that all the
other optimizations combined.

5 Experimental Evaluation

We now describe the experimental setup, results of our empirical study, and
their analysis.

5.1 Experimental Setup

The CPU is an Intel(R) Xeon(R) CPU E5-2640 v4 @ 2.40GHz with 64GB
RAM running CentOS Linux release 7.5 using a GCC version 7.3.1 with O3

optimization. The associated GPU is a Tesla P100 @ 1.33 GHz with 12GB
global memory using CUDA 10.2 version. P100 has 3584 CUDA cores spread
across 54 streaming multiprocessors.

Table 2 lists our graph suite. We have tested our implementation with the
Parameterized Algorithms and Computational Experiments Challenge (PACE)
largest public instances for Track 3 (heuristic) [6, 7]. While the graphs from
PACE Challenge are derived from real-world applications and from DIMACS
Challenges, to stress-test our implementation further, we use three real-world
instances: two from SteinLIB [28] and one (Deezer-HR) from SNAP [31]. All
the datasets a priori define the terminal set, except for the SNAP graph. So,
we randomly select it for Deezer-HR, with unit edge-weights. One of our main
motives for choosing this suite to study the behaviour of KMB on the largest
instances (with respect to k, the number of terminals), few of the hardest
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SteinLib instances (LIN and ALUE) and the high-degree instances (Deezer-
HR). We have performed all the below experiments on the same CPU-GPU
machine.

We compare using the following KMB implementations:

– Baseline-JEA: This is the sequential KMB implementation of open-source
Open Graph Drawing Framework (OGDF). This original version is part of
the published result from JEA [4]. We refer to this as JEA.

– Baseline-PACE: This is CIMAT team’s code [17], the winner of the
PACE Challenge heuristic track [6, 7]. We refer to this sequential version
as PACE.

– KMBCPU: This is our sequential C++ implementation built upon Dijk-
stra’s algorithm for SSSP, and optimized using the Early Halt technique
(Section 3.1).

– KMBGPU: This is our parallel CUDA implementation, built using our
Bellman-Ford SSSP and MST of [46]. This allows us to quantify the effect
of our GPU optimizations.

– KMBGPU-OPT: This is our KMBGPU with GPU optimizations en-
abled.

Thus, we compare our implementations with the high quality codes available
in open-source. Our sequential and parallel implementations are on par in so-
lution quality and often perform considerably better in execution time than
the baselines. PACE is an implementation of an evolutionary algorithm; hence
we continued to use a time limit of 30 minutes, as set by the challenge orga-
nizers. All other implementations are deterministic and complete within the
time limit except JEA on instance t11.

5.2 Effect on Execution Time

We evaluate our CPU and CUDA implementations against all the benchmark
testcases in Table 2 and compare against JEA and PACE. The codes for
JEA and PACE are executed and timed on the same CPU-GPU platform
where KMPCPU is timed. Figure 6 presents the speedup of KMBCPU and
KMBGPU-OPT over JEA, and that of KMBGPU-OPT over KMBCPU on
each graph instance. Table 3 presents their absolute execution times. There
is small overhead due to construction of G′ and G′′ and device to host mem-
ory transfer of arrays. Compared to the cumulative kernel execution time,
this overhead is negligible (and included in our presented results). Thus, our
presented GPU time includes the memory copy between host-device (in both
directions) and kernel execution times including the overhead.

Our KMBGPU-OPT achieves a speedup up to 62× (average 20×) over
JEA. It is also interesting to note that our KMBCPU outperforms JEA (av-
erage 4×). It is due primarily to the early SSSP-halt technique (Section 3.1).
Note that JEA time-limit exceeded (TLE) on t11 instance. Compared to KM-
BCPU, our KMBGPU-OPT achieves a speedup up to 27× (average 4×). Con-
sidering that these are irregular workloads from the challenge dataset, these
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Fig. 6 Speedup comparisons of the implementations (higher is better). JEA timed-out on
t11

t#
Time (in seconds)

KMBGPU-OPT
KMBCPU JEA

p in p-SSSP
t1 10.1 16 26.6 134.6
t2 30.2 16 83.3 305.2
t3 58.5 8 186.5 622.9
t4 64.2 8 195.6 693.5
t5 29.5 4 119.6 407.7
t6 29.4 32 129.6 377.3
t7 118.0 8 352.9 1110.1
t8 57.0 32 204.4 624.3
t9 2.8 128 78.0 156.6
t10 68.7 64 281.1 1856.8
t11 321.4 8 1145.1 0.0
t12 0.4 128 1.9 27.9
t13 2.4 128 33.4 118.5
t14 10.5 64 80.3 558.1

Table 3 Absolute execution time (in seconds) of G: KMBGPU-OPT, C: KMBCPU and
J:JEA. Note: PACE runs for a fixed 30 minutes time and JEA timed-out on t11

are significant results. Further analysis of KMBGPU-OPT reveals that at least
75− 85% of the total execution time is spent on SSSPs. The execution time is
affected by a complex interplay of several factors such as the overall graph size,
number of terminals, degree distribution, diameter over terminals2, maximum
weight, etc. But interestingly, these factors affect the algorithm’s running time
on CPU and GPU differently. For instance, maximum weight does not have

2 Diameter is the maximum eccentricity. Eccentricity(v) is the largest distance from v to
all the vertices in V , i.e., d(v, V ). Here, diameter over terminal means max d(v, L).
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Fig. 7 Edge-weight distribution of graph t11. The x-axis denotes buckets of edge-weight
values and y-axis denotes the number of edges having the edge-weights within a bucket (in
logscale).

Fig. 8 Comparison of KMBCPU and KMBGPU with weighted edges and unweighted edges.

any effect on the CPU (due to Dijkstra’s algorithm), whereas it has an adverse
effect on the GPU because the SSSP kernel running Bellman-Ford’s algorithm
takes longer to reach the fixed-point. Thus, graphs having skewed weight distri-
bution would have a larger impact on the GPU’s Bellman-Ford. To understand
this, we plot the edge-weight distribution of graph t11 in Figure 7. The weights
are distributed into ten equal-sized buckets (among the weights present) and
one bucket for zero edge-weight. We observe similar skewed weight distribution
also for other graphs (with only the change in absolute values).
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t#
OPT

O (103)
% deviation w.r.t. O % deviation of G

G v O C v O J v O P v O G v J G v P G v C
t1 11,300 15.38 15.38 15.38 40.61 +0.01 -14.12 0.00
t2 13,391 12.57 12.58 12.58 37.55 0.00 -15.34 0.00
t3 20,086 14.79 14.78 14.78 32.19 +0.01 -12.03 +0.01
t4 24,998 13.79 13.77 13.77 29.45 +0.02 -10.58 +0.02
t5 793,246 1.40 1.40 1.40 2.51 0.00 -0.92 0.00
t6 863,275 0.72 0.72 0.72 3.03 0.00 -1.85 0.00
t7 40,927 17.21 17.20 17.20 33.79 +0.01 -11.42 +0.01
t8 977,020 1.26 1.26 1.26 2.21 0.00 -0.73 0.00
t9 184 7.33 6.95 7.03 7.11 +0.06 -0.09 +0.14
t10 1,406,041 1.29 1.29 1.29 6.12 0.00 -4.44 0.00
t11 51,655 12.76 12.75 – 31.69 – -13.96 +0.01
t12 99 8.08 7.41 7.60 126.47 +0.50 -38.43 +0.68
t13 62 5.87 4.93 5.04 61.52 +0.72 -22.82 +0.82
t14 ? 0.00 0.76 1.28 50.72 -1.30 -32.31 -0.80

Table 4 Comparison of solution quality (optimal value for t14 is not known) Note: Steiner
values of G:KMBGPU-OPT, C: KMBCPU, J:JEA and P:PACE. An underline highlights
which among G, C, J, and P computed the Steiner value closest to the OPT.

Max-weight vs performance. To understand if maximum edge-weight of
a graph affects the CPU or GPU performance, we compare the time taken
by KMBCPU and KMBGPU-OPT on t1–t14 graphs with edge-weights and
without edges-weight (i.e. unit edge weight). This is plotted in Figure 8. We
know from Table 2 that the maximum weights for the graphs t9, t12 and
t13 are under 200 and we also observe that the KMBCPU times were almost
the same on weighted and unweighted graphs. However, for other instances,
both the implementations were significantly faster on unweighted graphs than
the weighted graphs.

5.3 Effect on Solution Quality

Table 4 presents optimal Steiner tree value and the deviation percentages.
The column titled O lists the optimal value available along with the dataset
(for all except t14). We have obtained the OPT values from PACE Challenge
data [6] and SteinLib [28]. The rest of the columns list deviation percentage
of the resultant Steiner tree value for KMBCPU, KMBGPU-OPT, JEA and
PACE with respect to the optimum value (abbreviated with single letters as
C, G, J and P for brevity). The underlined value indicates the best of the 4
variants. We observe that there is no one actual winner. Each one outperforms
the other on different instances.

We recall that the sequential PACE and our parallel implementations may
produce different outputs due to inherent non-determinism on two different in-
vocations. To mitigate this effect, we run the codes thrice and use the minimum
of the three Steiner values for both KMBGPU-OPT and PACE (KMBCPU
and JEA are deterministic). Table 4 presents the optimal Steiner tree values
and the deviation of the implementations (C, G, J and P) with respect to the
optimum value O. We observe that our implementations (C and G) are always
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closer to J with nearly ±2% deviation. It is noteworthy to mention that the
running times of C and G are significantly better than that of J (Section 5.2),
and of course better than P as P has a fixed time-limit.

Table 4 is categorized into two sets: how is the deviation of G, C, J and P
from the optimum, and how is G deviating from C, J and P. On t14 we do not
have the optimum so we choose the minimum among the five implementations
as the optimum, to calculate the deviation (which happens to be G). On the
first set, the underlined text denotes the variant closest to the optimum. On t3,
both C and J are the closest. Of the 14 instances, G and J produced the best
solution 5 times each; C produced it 6 times and P was always sub-optimal.
The deviation of G, C and J over O is almost similar. However, it is noteworthy
that P’s solution is far away from the optimum, and more so on t12. In fact,
it ends up producing a value more than twice that of the optimum! This is one
of the hardest instances from SteinLib. The negative deviation means that the
latter is far from the optimum. For example, G vs J on t14 is negative which
means than G is better and closer to optimum than J. Similarly, we observe
that the difference between the Steiner tree values is at most ±1% between
our sequential and the parallel versions (G vs C), and our parallel version
over JEA (G vs J). Similarly, G is considerably better than P in terms of the
solution quality. In addition, each of these values is within 2× of OPT for our
codes C and G. We observe that in practice, the KMB implementation achieves
much closer approximation to the optimal, computing Steiner trees that are
weight-wise only 18% away from the optimal (within 0–18%, G vs O). This
is very encouraging for real-world applications, as this means that the optimal
exponential time algorithm can be substituted by a poly-time approximation
algorithm and yet achieve a reasonably accurate result quickly.

5.4 Effects of Optimizations

As mentioned earlier in Section 4, the SSSP GPU optimizations are the key to
KMBGPU-OPT’s performance. We now discuss the effects GPU optimiza-
tions in detail.

5.4.1 Synchronization Optimizations

The push-based edge relaxation may result in common neighbor updates,
thereby requiring atomic update to min-distance, as well as additional effort
to update the parent. Performing both consistently and correctly is a chal-
lenge in a push-based variant. In contrast, the pull-based approach overcomes
both the mentioned challenges because every node (in turn, thread) updates
its own distance and its parent if the shortest path distance is improved. We
observe that push and pull are performance-wise similar when computing the
distances alone. However, to compute both the distance and the parent, pull
is ∼2× faster (compared to a lock-based parent update).
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Fig. 9 Time comparison of Topology-driven, Data-driven and Edge-list based variants to
compute SSSP distances with the first vertex as the source. Note that y-axis is in log-scale
(Smaller is better).

5.4.2 Computation Optimizations

We present the effect of graph representation and style of computation (topol-
ogy vs. data-driven) in Figures 9 and 10. Figure 9 compares the execution of
an SSSP on various optimizations such as edge-based, data-driven, topology-
driven, memoization, double-barrel and unrolling computation, whereas Fig-
ure 10 compares the number of iterations to reach fixed point for these opti-
mizations. Number of iterations provides a high-level insight into these variants
due to differences primarily in computation and synchronization.

Edge-based. In edge-based, m threads are launched and each thread relaxes
an edge in both the directions (as the graph is undirected). Although the
work-done by a thread is smaller compared to the vertex-centric processing,
the number of iterations taken to reach the fixed-point is large. For instance
on t1, edge-based processing takes ∼98K iterations to reach the fixed-point,
while the vertex-centric approach (using push or pull) takes only 500. This
is a general trend across all the graphs t1--t14. During a single iteration
of the topology-driven (TD) processing, each thread performs ∆ amount of
work, whereas in edge-based processing, it is two units of work per thread.
The propagation of distance information from source is faster in TD than the
edge-based approach. A thread in TD visits neighbours sequentially and does
more work compared to the corresponding edge-based processing. So, the latter
requires more iterations to converge (Figure 9) and takes longer (Figure 10).

Data-driven (DD) and Topology-driven (TD). DD outperforms TD on
average but significantly performs better than the edge-based approach. DD
is primarily guided by the graph structure, which manifests itself as overheads
during the worklist maintenance and slow distance propagation. For graph t1,
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Fig. 10 Iterations in Topology-driven, Data-driven, Edge-based and Memoization based to
compute SSSP distances with the first vertex as the source. (Smaller is better)

we observed about 33K atomic transactions for TD and only 21K for DD. This
is expected because DD is work-efficient. However, despite a larger number of
atomic instruction execution, TD and DD often show similar performance. Of
the 14 instances, TD and DD outperform one another in half of the instances.

Although the average time (in Figure 9) for DD appear lesser than that
of TD, the number of iterations is considerably larger than that of TD. More
precisely, on an average, DD achieved 9% performance improvement over TD
even with 50% more number of iterations than TD (in Figure 10). This indi-
cates that the overheads of the worklist in DD outweigh the benefits due to
reduced number of atomics executed. We note that this is surprising and in
contrast to the earlier findings for simpler graph algorithms such as BFS [37].

Similarly, we observe TD outperforms edge-based variant by a large margin.
On a different note, despite running SSSP to completion, TD-based parallel
implementation beats the SSSP-halt optimized sequential CPU implementa-
tion convincingly (recall Table 3).

Memoization. Memoization achieves on an average 15% reduction in the
number of iterations (refer Figure 10) over TD to reach fixed point. Interest-
ingly, the execution times of memoization and TD were similar (Figure 9) with
a small 2% average improvement. Memoization requires an additional n-sized
array to keep track of the node’s neighbours updated in the previous iteration.

Double-barrel and p-SSSP. Figure 11 presents the effect of SSSP variants
towards implementing KMB. We observe that the double-barrel approach per-
formed better than the basic 1-pull approach leading to an average 15% im-
provement. Interestingly, double-barrel performed similar in performance as
that of 3-pull.
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Fig. 11 Comparison of 1-Pull, 3-Pull, Double-barrel(2-SSSP) and p-SSSP with 3-Pull and
shared memory (smaller is better). Note 1-Pull is KMBGPU whereas p-SSSP-3pull-ShMem
is KMBGPU-OPT.

Fig. 12 KMBGPU with varying p-SSSP for the same graphs t9, t10, t11, and t14 (Smaller
is better). Note: On t11 for k = 4096 and 8192, the memory limit was exceeded.

It is also noteworthy that this optimization performed best on t14 com-
pared to the other combination of optimizations.

The generalized form of double-barrel approach is p-SSSP, which runs p
parallel SSSPs concurrently. We plot Figure 12 for four instances t9, t10,

t11 and t14 with varying p from 2 to next power of 2 after the terminal size.
p-SSSP performed well for fairly larger values of p except for values 4096 and
8192 on t11, for which the GPU memory limit is exceeded. For all the graphs, a



28 Rajesh Pandian M et al.

similar U-Shaped curve is observed when varying p. There is no one particular
p value that suits all the graph instances unlike the unroll factor in loop-
unrolling. The best p on all instances achieves at least 15–200% improvement
compared to double-barrel. On an average, the best p-SSSP performs 39%
better than the single-pull version. The best values of p are also listed in
Table 3. Selecting the best value of p for a given graph (without empirical
tuning) would require further investigation, which we leave as a future work.

Unrolling Computation. From Figure 11, we observe that the t-pull acceler-
ates the distance propagation than a single push or pull. More precisely, 3-pull
bettered ∆2 and 2∆ considerably. On an average, we see a 39% improvement
in KMBGPU when t = 3 for our graph-suite over the single-pull. This is also
reflected in Figure 11. On t14, the loop-unrolling did not help because in the
unit-weight graphs, the possibility of betterment of a edge during relaxing step
is less.

Due to the above observations, in SSSP, we prefer p-SSSP, t∆ and TD-
based computation for performing further optimizations.

5.4.3 Memory Optimizations

The maximum streaming multiprocessor efficiency ranges up to 97% on our
graph-suite. We applied the shared memory optimization for t∆ or 3-pull SSSP
implementation. As the computations are irregular, there is less coalescing
while accessing the adjacency list data. For instance, it incurs a 60% miss
ratio in DRAM for t1 (ranges 60 − 75% for t1-t14). However, upon using
shared memory, even a meagre 12% shared memory efficiency of an SSSP gave
us a 25% performance improvement for t1 compared to the implementation
without shared memory. Figure 11 presents execution times of KMB on GPU
highlighting different pull vs. shared memory optimizations. On few instances
such as t9, t12, and t14, 3-pull optimization performs better than the 3-
pull shared memory version. When the max-degree of the graph is very low
(less than 5) or when the number of high-degree vertices is extremely large,
we observe that the usefulness of shared memory optimization reduces. This
occurs because for low degree vertices, the reuse is very low; while for graphs
having several high-degree vertices, shared memory is insufficient. When the
adjacency list fits well into shared memory, the advantage is pronounced. On
t14, this optimization did not improve performance; in fact, it degraded it.
This is because t14 has a relatively larger average degree. Only 28% of vertices
of t14 have degree 24 or smaller, whereas for most of the other graphs CSR
adjacency list fits inside the shared memory. This considerably helps in ex-
ploiting the thread block-local scratchpad memory. On an average, with 3-pull
p-SSSP shared memory (i.e., KMBGPU-OPT), we achieve a 15% performance
improvement over the 3-pull p-SSSP implementation without shared memory,
and 60% improvement over the single pull-based implementation (Figure 11).
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Fig. 13 Scalability plot on t14 with increasing terminal size (lower is better)

5.5 Effect of Scaling

While several factors contribute to performance, undoubtedly, the number of
terminals directly affects it as the number of SSSP invocations is decided by
that factor. So, we use number of terminals to measure the scaling behavior of
our implementations. We use t14 as an example graph. To demonstrate scala-
bility, we plot Figure 13 with increasing number of terminals on the x-axis and
for the KMBGPU-OPT and KMBCPU times (in seconds) along the y-axis.
The number of terminals is varied from 500 to 5000 with step value of 500. We
observe that the KMBCPU execution time rises quickly and consumes 160.5
seconds for 5000 terminals. On the other hand, the KMBGPU-OPT imple-
mentation scales better, and completes within 30 seconds for 5000 terminals.

Figure 14 shows the time T spent per terminal in KMBGPU and KM-
BCPU. We observe that Tgpu/k value remains stable on the GPU even on
increasing the terminal size. In contrast, CPUs’ Tcpu/k increases linearly. This
shows the versatility and scalability of the GPU implementation.

6 Related Work

There were early efforts to design parallel algorithms for matrix based prob-
lems [14]. Since graphs are represented using adjacency matrix or incidence
matrix, parallel algorithms for recognition problems on graph classes [42] and
computation of properties related to connectedness and matchings [41] have
been extensively studied. More recently, efficient and scalable implementa-
tions on GPUs have been considered for a wide variety of graph algorithms:
Breadth First Search, Depth First Search, Minimum Spanning Tree, Sin-
gle Source Shortest Path, All Pairs Shortest Path, Triangle Counting, Be-
tweenness Centrality, to name a few. Details can be found in several pa-
pers [3, 23,33,37,38,40,46].
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Fig. 14 Time per terminal on t14 with increasing terminal size (lower is better)

NP-Complete Problems. GPU implementations of algorithms for NP-Complete
problems is a relatively recent line of research. Given that the only approach
to exactly solve NP-Complete problems is an exhaustive search of the solution-
space in the worst-case (unless we have non-trivial understanding of NP-
Complete problems), the prognosis for efficient parallel implementations is
naturally weak. However, recent research by Dhulipala, Blelloch and Shun [15]
has shown that there is a significant promise in considering good algorithms
which have a sound theoretical analysis for fast and scalable implementations.
Specifically, they mention that definitely adversarial inputs cannot be given
to make such implementations fail as there is already a worst-case analysis of
the algorithm that has been implemented. The first effort in this direction is
due to van der Zanden and Bodlaender [48], who came up with a GPU imple-
mentation of exact algorithms for computing treewidth. Treewidth of a graph
is the minimum width among all possible tree decompositions of a graph. This
NP-hard problem’s implementation also coincided with the PACE Challenge
in 2016 which also had a track for exact parallel implementations and a track
for heuristic parallel implementations of computing treewidth.

The 11th DIMACS Implementation Challenge [26] on the STP had many
challenge categories for different STP variants. The winner in many of the
categories was team StayNerd [18, 35] who had implementations of both the
exact algorithms and the heuristics. Their solver solved 4 different variants of
STP including a generalized version called prize-collecting Steiner tree prob-
lem (PCSTP). PCSTP has node-weights along with minimizing edge-weight
requirement for the resultant Steiner tree. Their CPU implementation achieved
significant speed and solution quality by heuristic-based local branching and
local search techniques along with heuristic based initialization and prepos-
sessing methods. Staynerd code involves mixed integer linear-programming
(ILP) approach for solving instances. It has filter mechanism to automatically
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choose the best algorithmic strategy based on the input instances. In contrast,
ours is a deterministic constant-approximation implementation.

Apart from the DIMACS dataset for the STP, SteinLib [27,28] is a collec-
tion of instances of the STP ranging from synthetic to real-world along with
their characteristics such as origin and optimum value.

Approximate and Parallel Approaches to STP. Given its practical im-
portance and its fundamental nature, STP and many of its variants including
those on planar graphs [45] and strongly chordal graphs [13] have been exten-
sively researched [24]. Starting with the KMB algorithm and Mehlhorn’s faster
implementation for KMB algorithm [36], up to the most recent approximation
algorithm due to Beyer and Chimani [4], there have been several improved
approximation algorithms. Many of these algorithms rely on linear program-
ming. Parallel algorithms for the STP have far fewer results than the number
of approximation algorithms. Park et al. [39] designed a parallel implementa-
tion of a classical 2-approximation algorithm, and discussed the challenges in
parallelizing the KMB algorithm. Makki, Been and Pissinou [32] designed a
parallel implementation of the Rayward-Smith’s algorithm. A recent survey [5]
talks about the different approaches in the design of parallel algorithms for the
STP. These ideas are for multi-core processing and do not readily translate to
GPU based parallelization.

GPU implementations for the STP are relatively very recent, and we are
aware of only two such works. Chow et al. [10] had a GPU implementation
for Rectilinear Steiner tree problem (which is a specialized version of STP).
Also, a GPU implementation due to Mathieu and Klusch [34] provides a good
speedup over CPU implementations.

Chow et al. work is on obstacle-avoiding rectilinear Steiner minimum tree
(OARSMT) problem in VLSI physical design. Given a set of pins and rect-
angular obstacles on 2D a plane. The objective is to find a rectilinear Steiner
tree of minimum length connecting all pins. The pins are the terminals in our
setup. The setup does not define the Steiner node explicitly. The edge-weight
between two vertices in STP is the Manhattan distance between pins. The
authors define the shortest path region between every two pin and compute
maze routing algorithm on it, and finally an MST. The routing algorithm is
run after creating an escape graph (a simplified Hanan grid) and all the Man-
hattan shortest distance paths between every pair of pins. Every turn in the
path is a Steiner point. Connecting the shortest path regions is a key step done
in parallel which is analogous to finding the shortest path between terminals
in the STP setting.

Mathieu and Klusch’s heuristic-based GPU implementation relies on a lo-
cal search approach. They take an initial tree and separate it at the degree 3
nodes to create set of paths called loose-paths. Then, they find a newer least
weighted path to merge the two different loose-paths in parallel (which resem-
bles multiple sources and multiple destinations). If this step improves (a newer
shorter path between two loose-paths) the weight of the current target then
the solution is updated; otherwise, a different pair of loose-path is sought in
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the tree. They primarily discuss the speedup when the number of terminals
changes (e.g., k = 4 and k = 128), but do not discuss the solution quality.
We could not obtain their code to compare with ours quantitatively nor it
is available public. Our algorithm is deterministic with proven approximation
guarantee on the solution. It works on the largest of the graph instances where
the terminals are in thousands. The authors mentioned good speedup over
CPU implementation only for instances with more than 104 edges. However,
in our case, speedup is substantial for a variety of graph instances.

7 Conclusion and Future Work

We have devised an efficient GPU implementation of the KMB algorithm by
addressing challenges related to the graph representation, choice of parallelism,
as well algorithm-specific GPU optimizations. Our CPU implementation is an
improvement over the OGDF’s KMB implementation, and it is on par with
the PACE winner on the suite instances. Based on its performance on a suite
of graphs from competitive challenges as well as other real-world graphs, we
conclude that the implementation provides a significant improvement of ex-
ecution time over the sequential versions (JEA, PACE, and our KMBCPU).
In addition, the solution quality is much closer to the optimal than the an-
alytical guarantee of 2× of the KMB algorithm. Our KMBCPU runs faster
and achieves speedup up to 15× over JEA. Our KMBGPU-OPT achieves
significant speedup up to 62× over JEA. We believe that our ideas can signif-
icantly speedup other local-search STP implementations. Further, pull-based
processing is often considered as an alternative, but STP benefits so much
from it, that it is almost inevitable to use it. We also strongly believe that the
parallelization strategies and GPU optimization techniques developed in this
work can be applied to other graph problems wherein the algorithm involves
multiple basic-parallel algorithms within its sub-routines.
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