
Accelerating Computation of
Steiner Trees on GPUs

Rajesh Pandian M
CS16D003

 www.cse.iitm.ac.in/~mrprajesh

http://www.cse.iitm.ac.in/~mrprajesh

17-Mar-2022 Accelerating Computation of Steiner Trees on GPUs | Rajesh's Seminar-2 Talk 2/41

Acknowledgements

● Many thanks to my advisors N.S.Narayanaswamy & Rupesh Nasre.
● Thanks to P100 – GPU Server and TCS+PACE Lab members.
● This work evolved after the PACE Challenge 2018 [www.pacechallenge.org] on Steiner Tree

● This work is published in IJPP 2022.

http://www.pacechallenge.org/

17-Mar-2022 Accelerating Computation of Steiner Trees on GPUs | Rajesh's Seminar-2 Talk 3/41

Outline
● Introduction - Steiner Tree Problem
● Definition & Example
● KMB algorithm

● Challenges in parallelizing KMB
● Design Choice of KMB
● CPU Optimization

● GPU Implementation
● SSSP Optimization – Sync, Compute, Memory
● Double Barrel and p-SSSP
● Experimental Results
● Summary

Introduction & Algorithm

Designing &
CPU Implementation + Optimization

GPU Implementation
& Optimization

17-Mar-2022 Accelerating Computation of Steiner Trees on GPUs | Rajesh's Seminar-2 Talk 4/41

Steiner Tree Problem (STP)

● Steiner Tree - tree with all the terminals and zero or more non-terminals.

● Terminals or terminal vertices are special vertices which must be present in the tree
● Non-terminals or Steiner vertices are optional vertices – generally included in tree to minimize the overall

weight of the resulting tree.

● Standard Graph-theoretic notation is used n=|V| , m=|E| and additionally k=|L|

● Applications[Hwang et. al. 92]: VLSI design, network/vehicle routing, etc.

Input : Undirected Graph G(V, E, W, L) W is non-negative edge weights; L V terminals ⊆ V terminals
Output : A tree with all terminals
Goal : Minimize the weight of the tree

F.K. Hwang, D.S. Richards, P. Winter, The Steiner Tree Problem, Annals of Discrete Mathematics, Elsevier, 1992.

Informally

17-Mar-2022 Accelerating Computation of Steiner Trees on GPUs | Rajesh's Seminar-2 Talk 5/41

Steiner Tree Problem (STP) – Example
Input : Graph G(V, E, W, L) W:E→ Z+ and L V terminals ⊆ V terminals
Output : Connected subgraph T’(V’ L, E’ E) of G such that Min W(E’) ⊇L, E’⊆E) of G such that Min W(E’) ⊆ V terminals

// Minimum weighted tree with all terminals

Isn’t MST?

 Terminals

Non-terminals

Fig 1 (a)

a

d

b c10

6 6

10 6
10

Fig 1 (b)

a

d

b c10

6 6

10 6
10

17-Mar-2022 Accelerating Computation of Steiner Trees on GPUs | Rajesh's Seminar-2 Talk 6/41

Steiner Tree Problem (STP) – Example
Input : Graph G(V, E, W, L) W:E→ Z+ and L V terminals ⊆ V terminals
Output : Connected subgraph T’(V’ L, E’ E) of G such that Min W(E’) ⊇L, E’⊆E) of G such that Min W(E’) ⊆ V terminals

// Minimum weighted tree with all terminals

|MST| = 37
|OPT| = 18

 Terminals

Non-terminals

Fig 2 (a)

a

d

b c10

6 6

10 6
10

h g f e555

5 5

Fig 2 (b)

a

d

b c10

6 6

10 6
10

h g f e555

5 5

17-Mar-2022 Accelerating Computation of Steiner Trees on GPUs | Rajesh's Seminar-2 Talk 7/41

Steiner Tree Problem (STP) - Hardness

Take away
● MST solution is a valid feasible Steiner Tree solution
● However, solution can be arbitrarily bad w.r.t OPT.

Special cases
● L = {u,v} or k = 2 STP=ShortestPath_In_G(u,v)
● L = V or k = n STP=MST(G)

● In general STP is NP-Hard

Input : Graph G(V, E, W, L) W:E→ Z+ and L V terminals ⊆ V terminals
Output : Minimum weighted tree with all terminals

Approximation
algorithms

Standard Graph-theoretic notation is used n=|V| , m=|E| and additionally k=|L|

2 n

In P Time

17-Mar-2022 Accelerating Computation of Steiner Trees on GPUs | Rajesh's Seminar-2 Talk 8/41

How to deal with NP-Hardness

Approximation algorithm
● Runs in Polynomial time.
● Outputs an approximate solution with some guarantee.

– e.g 2 or some constant, log n, etc.

● There are several algorithms
– Kou, Markowsky and Berman[KMB81]
– Mehlhorn [M88]
– Robins and Zelikovsky [RZ2000]

● No Polynomial time algorithm can find optimal solution unless P = NP.
● What could be naive solutions? Enumerate all Spanning trees.

|ALG| <= 2 |OPT|

L. Kou, G. Markowsky, and L. Berman. A fast algorithm for Steiner trees. Acta Informatica, 1981.

KMB

17-Mar-2022 Accelerating Computation of Steiner Trees on GPUs | Rajesh's Seminar-2 Talk 9/41

Comparison with related work
Solver CPU GPU k >128 Quality Time taken

PACE2018 Winner
[CIMAT Team]

✓ ✓ ✭✭ 🕑🕑🕑🕑🕑

OGDF’s KMB
/JEA [BC19]

✓ ✓ ✭✭✭ 🕑🕑🕑

CUDA STAR
[MK15]

✓ - -

Our KMBCPU
[MNN22]

✓ ✓ ✭✭✭ 🕑

Our KMBGPU-OPT
[MNN22]

✓ ✓ ✭✭✭ 🕑

Table 1 Characteristics comparison with related work and our work.
average

17-Mar-2022 Accelerating Computation of Steiner Trees on GPUs | Rajesh's Seminar-2 Talk 10/41

Challenges in parallelizing KMB

● Graph algorithms in general has an irregular access pattern.
– Defies the scope of parallelizing

● Involvement of multiple primitive algorithms (such as SSSP and MST)
– Dependence on an algorithm input from the output of previous algorithm

● Maintaining consistent parent information in SSSP along with distances.
– Individual atomic instructions may not lead to atomic transactions.

● Parallel KMB may output different solutions during different invocations,
– Makes it difficult to validate the solution,

17-Mar-2022 Accelerating Computation of Steiner Trees on GPUs | Rajesh's Seminar-2 Talk 11/41

Our Contributions

● Optimized CPU implementation for KMB algorithm
– Novel SSSP-halt technique
– Speed-up upto 15x (average 4x) improvement over JEA/OGDF’s KMB[BC19]

● Optimized GPU implementation for KMB algorithm
– Novel p-SSSP technique (multiple parallel-SSSP in parallel)
– Speed-up upto 27x (average 4x) over sequential CPU [MNN22]
– Speed-up upto 62x (average 20x) over sequential JEA/OGDF’s KMB [BC19]

S. Beyer and M. Chimani, Strong Steiner Tree Approximations in Practice, JEA 2019.

17-Mar-2022 Accelerating Computation of Steiner Trees on GPUs | Rajesh's Seminar-2 Talk 12/41

KMB Algorithm G(V,E,W,L)
Phase 1

Computes the shortest
distance between every pair of
terminals

Phase 2

// Construct G'= KL

Build a graph G' over
terminals, having edge-weights
corresponding to the shortest
distances computed in Phase 1

// Every edge in G' corresponds
to a path in G

MST (G')

Phase 3

// Construct G''

For every edge in MST(G')
substitute the edges with the
corresponding shortest path in G

// Collect all the edges & vertices
of the corresponding path to
construct G''

MST(G'')

17-Mar-2022 Accelerating Computation of Steiner Trees on GPUs | Rajesh's Seminar-2 Talk 13/41

KMB Algorithm – Running example
a

b g c

e
c

a

d

b g c

e
c

7 3

5 52

8 5
6

4

a

b c
10

1010

a

b c
10

1010

a

b c
10

1010

a

b c
10

1010

a

d

b c

e

Fig. 3 Execution steps of KMB algorithm, where are terminals and are non-terminals.

(ii) SSSP (iii) G' (iv) G'+MST (v) G''+MST(i) G

a

b g c

c

7 3

2

8

a

d

b c
5 5

5

1) A parallel KMB may output a different answer. (2) Last MST may be avoided

17-Mar-2022 Accelerating Computation of Steiner Trees on GPUs | Rajesh's Seminar-2 Talk 14/41

KMB Algorithm G (V,E,W,L)
Phases 1 & 2

For u in L {
 For v in L {
 Puv = ShortestPath(u,v)
 W'(u,v) = |Puv|
 }
}
T' = MST(G', W')

Phase 3

For (u,v) in edges of T' {
 G'' = G'' ∪ Puv
 //Add vertices & edges of Puv

}

T'' = MST (G'', W)

Observe:
Two For-loops

17-Mar-2022 Accelerating Computation of Steiner Trees on GPUs | Rajesh's Seminar-2 Talk 15/41

KMB Algorithm G (V,E,W,L)
Input: Graph G(V, E, W, L)
Output: 2-approx Steiner Tree T (VT , ET) VT L⊇ L

For u ∈ L {
 SSSP(G, W , L, u)
 Compute W' incrementally
}
T' = MST(G' ,W')

Compute G'' and its vertices, adjList using T'
T'' = MST(G'' ,W)

return T''

Single For-loop
but runs SSSP to

completion

17-Mar-2022 Accelerating Computation of Steiner Trees on GPUs | Rajesh's Seminar-2 Talk 16/41

KMB Algorithm G (V,E,W,L)
Input: Graph G(V, E, W, L)
Output: 2-approx Steiner Tree T (VT , ET) VT L⊇ L

For u ∈ L {
 parallel SSSP(G, W , L, u);
 Compute W′ incrementally;
}
T' = parallel MST(G', W');

Compute G'' and its vertices, adjList ;
T'' = parallel MST(G'', W);

return T''

A novel aspect of our
work is to run multiple

parallel-SSSPs in parallel.

17-Mar-2022 Accelerating Computation of Steiner Trees on GPUs | Rajesh's Seminar-2 Talk 17/41

SSSP : Dijkstra vs BellmanFordMoore
● Runs in time O((m+n) log n)

● Uses Fibonacci Min-Heap

● At each iteration,
– Pick up node from Q
– RELAXes all its neighbours

● Runs in time O(nm)

● No heap

● All edges are RELAXed at most (n-1)
times

In parallel setting it is difficult use Queue RELAX all edges
Launched using n threads or m

For i from 1 to n-1:
 For each edge (u, v) in E
 RELAX(u,v, W(u,v))

17-Mar-2022 Accelerating Computation of Steiner Trees on GPUs | Rajesh's Seminar-2 Talk 18/41

Dijkstra and its RELAX operations
INPUT: G(V,E,W), src
OUTPUT: d[], p[]

INITIALIZE-SINGLE -SOURCE (G, src)
Q = G.V
while(! Q.empty()) {
 u = ExtractMin(Q);
 For v in Adj[u]
 RELAX(u,v, W)
}

RELAX(u, v, W){
 If u.d + W(u,v) < v.d {
 v.d =u.d + W(u,v)
 v.p = u
 }
}

INITIALIZE-SINGLE -SOURCE(G , src)
 For each v in G.V {
 v.d = ∞
 v.p = NIL
}
src.d = 0

Source : CLRS book

17-Mar-2022 Accelerating Computation of Steiner Trees on GPUs | Rajesh's Seminar-2 Talk 19/41

CPU Implementation - Optimization
● SSSP-halt optimization

…

3
2

k
Halt SSSP when all terminals are visited

Dijkstra Property: when a node u is picked from Q for
processing then the distance[u] is saturated using

all the visited nodes.

Steps
of
SSSP
execution

Fig. 4 SSSP-halt visualization

s

17-Mar-2022 Accelerating Computation of Steiner Trees on GPUs | Rajesh's Seminar-2 Talk 20/41

Design choice for parallelization

CPU GPU-OPTGPUv1

Fig. 5 Design choices.

17-Mar-2022 Accelerating Computation of Steiner Trees on GPUs | Rajesh's Seminar-2 Talk 21/41

GPU Implementation - SSSP
● n-threads
● One thread for each node
● Performs RELAX in parallel
● RELAXes its neighbours
● Till there is no change1 2 n

Every node/thread
pushes the data

to neighbours

Fig. 6 push SSSP

17-Mar-2022 Accelerating Computation of Steiner Trees on GPUs | Rajesh's Seminar-2 Talk 22/41

KMB Algorithm G(V,E,W,L)
MAIN
For s in L {
 ThdsPerBlk = 512; // or 1024
 Blks = n⌈n /ThdsPer Blk ;⌉;
 do {
 INIT-KERNEL<Blks,ThdsPerBlk>(s, ds , ps , n);
 SSSP-KERNEL<Blks,ThdsPerBlk>(.., s, ds , ps , changed, n);
 CopyTo(DArray, ds); // From Device to Host.
 CopyTo(PArray, ps); // From Device to Host.
 CopyTo(hChanged, changed); // From Device to Host.
 }while (hChanged);
}

● Note we reuse d[] p[] across
iterations

● We need the p[] for knowing
the intermediate vertices in
the shortest path

17-Mar-2022 Accelerating Computation of Steiner Trees on GPUs | Rajesh's Seminar-2 Talk 23/41

KMB Algorithm G(V,E,W,L)
SSSP-KERNEL(..,s, ds , ps , changed, n) {
u = tid // compute tid;
If tid < n {
 For v ∈ adjacent[u] { // Using CSR arrays
 // Relax Operation (u, v, W(u,v))
 newCost = ds[u] + W(u, v) ;
 old = ds[v];
 If newCost < old
 Atomic-MIN(ds[v], newCost);
 // Updates Parent array
 If Atomic-MIN is success {
 ps[v] = u;
 changed = true;
 }
} }

Note :

● Parent of v should be updated
if the Atomic-MIN is success

Is it enough?

17-Mar-2022 Accelerating Computation of Steiner Trees on GPUs | Rajesh's Seminar-2 Talk 24/41

Parent update - Challenge
<snip>
..
newCost = ds[u] + W(u, v) ;

old = ds[v];

If newCost < old
Atomic-MIN(ds[v], newCost);

// Updates Parent array
If Atomic-MIN is success {

ps[v] = u;

changed = true;
}
</snip>

1 2

v
10 57

Two threads want
to update distance of their

common neighbour v Fig. 7 Challenges in parent update

17-Mar-2022 Accelerating Computation of Steiner Trees on GPUs | Rajesh's Seminar-2 Talk 25/41

<snip>
newCost = d[u] + W (u, v) ;
old = d[v];
If newCost < old
 oldA=Atomic-MIN(d[v], newCost);

// Atomic-MIN is Success
If oldA != old {
 // Update’s Parent array
 p[v] = u;
 changed = true;
}
</snip>

Parent update - Challenge

newCost=7
old=10

d[v]=7 //oldA=10

p[v] =1

newCost=5
old=10

d[v]=5 //oldA=7

p[v]=2

Wrong! How to update both distance and parent at the same time? Locks?

Time

It is a challenge to find which “thread” updated d[v] to the minimum

1 2

v
10

57

Thread 1 Thread 2

Shared
d[], p[]

17-Mar-2022 Accelerating Computation of Steiner Trees on GPUs | Rajesh's Seminar-2 Talk 26/41

Synchronization optimization • Pull

1 2 2

<snip>
newCost = d[v] + W (tid, v) ;
old = d[u];
If newCost < old {
 d[u] = newCost
 p[u] = tid;
 changed = true;
}

</snip>
No Atomics

Parent update is easy

Because, one thread is writing to an index

Fig. 8 Pull-SSSP

17-Mar-2022 Accelerating Computation of Steiner Trees on GPUs | Rajesh's Seminar-2 Talk 27/41

GPU Optimizations
● Synchronization

– Push
– Pull

● Computation
– Data-driven
– Edge-based
– Controlled Computation unrolling

● Δ2

● 2Δ
● tΔ

● Memory
– Shared memory

Δ – max degree of the graph

17-Mar-2022 Accelerating Computation of Steiner Trees on GPUs | Rajesh's Seminar-2 Talk 28/41

GPU Optimizations
● Synchronization

– Push
– Pull

● Computation
– Data-driven
– Edge-based
– Controlled Computation unrolling

● Δ2

● 2Δ
● tΔ

● Memory
– Shared memory

Δ – max degree of the graph

These worked
best for us!

17-Mar-2022 Accelerating Computation of Steiner Trees on GPUs | Rajesh's Seminar-2 Talk 29/41

Compute optimization
● Computation Unrolling

– Instead of one thread doing Δ work, perform more work per thread
– Update also neighbours of neighbours (Δ2)
– Repeat the work; Say 2 times or t times (2Δ or tΔ); e.g. we do pull 3 times in the kernel – 3-pull
– Empirically, we achieved best performance when t=3

● Data-driven
– Needs Worklist (WL)
– Active/Change nodes are inserted into WL
– Only size of WL many threads launched
– Need synchronization while inserting nodes in WL

● Edge based optimization
– m-threads are launched
– RELAXes one edge or a group of edges
– Representation needs to be modified.

Graph algorithms
are memory

bounded

17-Mar-2022 Accelerating Computation of Steiner Trees on GPUs | Rajesh's Seminar-2 Talk 30/41

Memory optimization
● Programmable shared memory can be useful
● When there are multiple reads to DRAM
● We can move data to shared memory

● For e.g. In 3-pull, we moved CSR AdjList to shared
● As the neighbours AdjList is accessed 3 times
● Of the total 48K per block
● when using 512 threadPerBlock we have 24 words to store per thread

● Hence, if degree(node) < 25 we use shared, we move CSR AdjList[node] to Shared
● With shared memory we achieve 25% of improvement in 3-pull

GPU
core

Shared
Memory

DRAM

17-Mar-2022 Accelerating Computation of Steiner Trees on GPUs | Rajesh's Seminar-2 Talk 31/41

Double-barrel approach
● SSSP happens in parallel
● To run two SSSP, we have to run one after the other
● Instead we use Double-barrel approach
● This can be generalized (p-SSSP)

Image source: https://stock.adobe.com/

In our Double-barrel approach, we run two
individually parallel SSSPs also in parallel.

17-Mar-2022 Accelerating Computation of Steiner Trees on GPUs | Rajesh's Seminar-2 Talk 32/41

Double-barrel approach
Result Array: d[n]
Initialize(d=INTMAX)
d[src] = 0
FixedPoint{

doRELAX(G, d, changed ...);
}

∞

0

∞

1

∞

2

∞ ∞

s
1

∞ ∞ ••• ∞ ∞ ∞ ∞

n-1

∞

n

∞ ∞ ∞ ∞ ∞ ∞ ∞

s
2

∞ ∞

 2n-1

0 0∞ •••∞

2n

d array

••• • • • • • •

Result Array: d[2n]
Initialize(d=INTMAX)
d[src1] = 0; d[n+src2] = 0
FixedPoint{

doRELAX(G, dist, changed, ...);
}

Fig. 9 Double-barrel approach.

17-Mar-2022 Accelerating Computation of Steiner Trees on GPUs | Rajesh's Seminar-2 Talk 33/41

Key takeaways so far
● Solving Steiner Tree Problem is NP-hard

● KMB Algorithm, a 2-approximation algorithm

● CPU implementation has SSSP-halt optimization

● SSSP with parent array update was challenging

● Pull-based SSSP is great for KMBGPU even without SSSP-halt

● Parallel-SSSPs in parallel (p-SSSP)

17-Mar-2022 Accelerating Computation of Steiner Trees on GPUs | Rajesh's Seminar-2 Talk 34/41

Experimental setup & Graphsuite
CPU

● Intel(R) Xeon(R) E5-2640 v4 @ 2.40GHz
● 64GB RAM

GPU
● Tesla P100 @ 1.33 GHz
● 12GB global memory

● CentOS Linux release 7.5
● GCC 7.3.1 with O3
● CUDA 10.2

Graphsuite
– Total 14 Graphs

● 11 from PACE Challenge [PACE2018]
● 2 from SteinLib
● 1 from SNAP

– n : 17K – 235K
– m : 27K – 498K
– k : 0.1K – 6K

Baselines
– PACE’18 Winner – CIMAT [PACE2018]
– ODGF’s KMB/JEA [BC19]

● PACE 2018 - https://pacechallenge.org/2018/steiner-tree/
● CIMAT Team - https://github.com/HeathcliffAC/SteinerTreeProblem
● S. Beyer and M. Chimani, Strong Steiner Tree Approximations in Practice, JEA 2019.

https://github.com/HeathcliffAC/SteinerTreeProblem

17-Mar-2022 Accelerating Computation of Steiner Trees on GPUs | Rajesh's Seminar-2 Talk 35/41

Experiments – Comparison of solution quality

Solution Quality

● KMBGPU-OPT, KMBCPU and JEA are similar vs OPT

● KMBGPU-OPT and KMBCPU are better than PACE on all instances

STP is an NP-hard,
our algorithm finds a solution

closer to optimum.

Why?

● CIMAT Team - https://github.com/HeathcliffAC/SteinerTreeProblem
● S. Beyer and M. Chimani, Strong Steiner Tree Approximations in Practice, JEA 2019.
●

https://github.com/HeathcliffAC/SteinerTreeProblem

17-Mar-2022 Accelerating Computation of Steiner Trees on GPUs | Rajesh's Seminar-2 Talk 36/41

Experiments - Speed-up

t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12 t13 t14 avg
0

10

20

30

40

50

60

70

KMBCPU vs JEA

KMBGPU-OPT vs JEA

KMBGPU-OPT vs KMBCPU
Sp

ee
d-

up

Fig. 10 Speed-up comparisons of the implementations (higher is better). JEA timed-out on t11

Takeaway: KMBCPU and KMBGPUOPT is better than JEA

17-Mar-2022 Accelerating Computation of Steiner Trees on GPUs | Rajesh's Seminar-2 Talk 37/41

Comparison of GPU time with Shared memory

t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12 t13 t14 avg
0.1

1

10

100

1000
1pull 3pull 2-SSSP p-SSSP p-SSSP-3pull-ShMem

Ti
m

e
on

 G
PU

 (
in

 s
ec

on
ds

)

Fig. 11 Comparison of 1-Pull, 3-Pull, Double-barrel & p-SSSP+3-Pull+shared memory
(smaller is better). Note: 1-Pull is KMBGPU whereas p-SSSP-3pull-ShMem is KMBGPU-OPT

Takeaway: Combining GPU optimizations p-SSSP, 3-Pull & Shared memory performs best.

17-Mar-2022 Accelerating Computation of Steiner Trees on GPUs | Rajesh's Seminar-2 Talk 38/41

Comparison of p-SSSP

2 4 8 16 32 64 128 256 512 1024 2048 4096
9.5

10

10.5

11

11.5

12

12.5

13
t14 Polynomial (t14)

#concurrent SSSPs (p)

K
M

B
G

PU
-O

PT
 T

im
e

(in
 s

)

Fig. 12 KMBGPU with varying p-SSSP for the same graphs t14 (Smaller is better).

Takeaway: As we increase the #parallel SSSPs it reaches a point and then increases.

17-Mar-2022 Accelerating Computation of Steiner Trees on GPUs | Rajesh's Seminar-2 Talk 39/41

Experiments – Scalability of GPU and CPU

Fig. 13 Scalability plot on t14 with increasing terminal size (lower is better)

500 1000 1500 2000 2500 3000 3500 4000 4500 5000
0

20

40

60

80

100

120

140

160

180
KMBGPU Polynomial (KMBGPU)
KMBCPU Polynomial (KMBCPU)

Number of terminals

Ti
m

e
(i

n
se

co
nd

s)

Takeaway: KMBGPU-OPT scales better than KMBCPU

17-Mar-2022 Accelerating Computation of Steiner Trees on GPUs | Rajesh's Seminar-2 Talk 41/41

Summary
● SSSP halt-optimization benefits CPU.
● Pull and p-SSSP optimization benefits GPU.
● Our output Steiner tree can be used as initial tree for other local search algorithms.
● Our technique is applicable when multiple parallel instances of an operator are used.

Future work
● KMBCPU can be extended to multicore-CPU.
● KMBGPU-OPT can be extended to multi-GPU.

● Capacitated Vehicle Routing Problem
● Build a GPU graph library for aiding NP-Hard problems.

Thank you.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 41

