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Steiner Tree Problem (STP)

● Steiner Tree - tree with all the terminals and zero or more non-terminals.

● Terminals or terminal vertices are special vertices which must be present in the tree
● Non-terminals or Steiner vertices are optional vertices – generally included in tree to minimize the overall 

weight of the resulting tree.

● Standard Graph-theoretic notation is used n=|V| , m=|E| and additionally k=|L|

● Applications[Hwang et. al. 92]: VLSI design, network/vehicle routing, etc.

Input : Undirected Graph G(V, E, W, L)  W is non-negative edge weights; L  V terminals ⊆ V terminals 
Output : A tree with all terminals
Goal : Minimize the weight of the tree

F.K. Hwang, D.S. Richards, P. Winter, The Steiner Tree Problem, Annals of Discrete Mathematics, Elsevier, 1992.

Informally
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Steiner Tree Problem (STP) – Example 
Input : Graph G(V, E, W, L)  W:E→ Z+ and L V terminals ⊆ V terminals 
Output :  Connected subgraph T’(V’ L, E’ E) of G such that Min W(E’) ⊇L, E’⊆E) of G such that Min W(E’) ⊆ V terminals 

// Minimum weighted tree with all terminals

Isn’t MST?

        Terminals

Non-terminals

Fig 1 (a)
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Steiner Tree Problem (STP) – Example 
Input : Graph G(V, E, W, L)  W:E→ Z+ and L V terminals ⊆ V terminals 
Output :  Connected subgraph T’(V’ L, E’ E) of G such that Min W(E’) ⊇L, E’⊆E) of G such that Min W(E’) ⊆ V terminals 

// Minimum weighted tree with all terminals

|MST| = 37
|OPT| = 18

        Terminals

Non-terminals

Fig 2 (a) 
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Steiner Tree Problem (STP) - Hardness

Take away
● MST solution is a valid feasible Steiner Tree solution
● However, solution can be arbitrarily bad w.r.t OPT.

Special cases
● L = {u,v} or k = 2 STP=ShortestPath_In_G(u,v)
● L = V or k = n STP=MST(G)

● In general STP is NP-Hard   

Input : Graph G(V, E, W, L)  W:E→ Z+  and L V terminals ⊆ V terminals 
Output : Minimum weighted tree with all terminals

Approximation 
algorithms

Standard Graph-theoretic notation is used n=|V| , m=|E| and additionally k=|L|

2 n

In P Time
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How to deal with NP-Hardness

Approximation algorithm
● Runs in Polynomial time.
● Outputs an approximate solution with some guarantee. 

– e.g 2 or some constant, log n, etc.

● There are several algorithms
– Kou, Markowsky and Berman[KMB81]
– Mehlhorn [M88]
– Robins and Zelikovsky [RZ2000]

● No Polynomial time algorithm can find optimal solution unless P = NP.
● What could be naive solutions? Enumerate all Spanning trees. 

|ALG| <= 2 |OPT|

L. Kou, G. Markowsky, and L. Berman. A fast algorithm for Steiner trees. Acta Informatica, 1981.

KMB
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Comparison with related work
Solver CPU GPU k >128 Quality Time taken

PACE2018 Winner 
[CIMAT Team]

✓ ✓ ✭✭ 🕑🕑🕑🕑🕑

OGDF’s KMB
/JEA [BC19]

✓ ✓ ✭✭✭ 🕑🕑🕑

CUDA STAR 
[MK15]

✓ - -

Our KMBCPU 
[MNN22]

✓ ✓ ✭✭✭ 🕑

Our KMBGPU-OPT 
[MNN22]

✓ ✓ ✭✭✭ 🕑

Table 1 Characteristics comparison with related work and our work.
average
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Challenges in parallelizing KMB

● Graph algorithms in general has an irregular access pattern.
– Defies the scope of parallelizing

● Involvement of multiple primitive algorithms (such as SSSP and MST)
– Dependence on an algorithm input from the output of previous algorithm

● Maintaining consistent parent information in SSSP along with distances.
– Individual atomic instructions may not lead to atomic transactions.

● Parallel KMB may output different solutions during different invocations,
– Makes it difficult to validate the solution,
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Our Contributions

● Optimized CPU implementation for KMB algorithm
– Novel SSSP-halt technique
– Speed-up upto 15x (average 4x) improvement over JEA/OGDF’s KMB[BC19]

● Optimized GPU implementation for KMB algorithm
– Novel p-SSSP technique (multiple parallel-SSSP in parallel)
– Speed-up upto 27x (average 4x) over sequential CPU [MNN22]
– Speed-up upto 62x (average 20x) over sequential JEA/OGDF’s KMB [BC19]

S. Beyer and M. Chimani,  Strong Steiner Tree Approximations in Practice, JEA 2019.
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KMB Algorithm G(V,E,W,L)
Phase 1

Computes the shortest
distance between every pair of 
terminals

Phase 2

// Construct G'= KL

Build a graph G' over 
terminals, having edge-weights 
corresponding to the shortest 
distances computed in Phase 1

// Every edge in G' corresponds 
to a path in G

MST (G') 

Phase 3

// Construct G''

For every edge in MST(G')  
substitute the edges with the 
corresponding shortest path in G

// Collect all the edges & vertices 
of the corresponding path to 
construct G''

MST(G'')
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KMB Algorithm – Running example
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Fig. 3 Execution steps of KMB algorithm,  where         are terminals and      are non-terminals.
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1) A parallel KMB may output a different answer. (2) Last MST may be avoided
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KMB Algorithm G (V,E,W,L)
Phases 1 & 2

For u in L {
   For v in L {
      Puv = ShortestPath(u,v)
      W'(u,v) = |Puv|
     }
}
T' = MST(G', W')

Phase 3

For (u,v) in edges of T' {
    G'' = G'' ∪ Puv 
   //Add vertices & edges of Puv

} 

T'' = MST (G'', W)

Observe: 
Two For-loops
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KMB Algorithm G (V,E,W,L)
Input: Graph G(V, E, W, L)
Output: 2-approx Steiner Tree T (VT , ET )  VT  L⊇ L

For u ∈ L {
    SSSP(G, W , L, u)
    Compute W'  incrementally
}
T' = MST(G' ,W' )

Compute G'' and its vertices, adjList using T'
T'' = MST(G'' ,W)

return T'' 

Single For-loop 
but runs SSSP to 

completion
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KMB Algorithm G (V,E,W,L)
Input: Graph G(V, E, W, L)
Output: 2-approx Steiner Tree T (VT , ET )  VT  L⊇ L

For u ∈ L {
    parallel SSSP(G, W , L, u);
    Compute W′ incrementally;
}
T' = parallel MST(G', W' );

Compute G'' and its vertices, adjList ;
T'' = parallel MST(G'', W );

return T''

A novel aspect of our 
work is to run multiple 

parallel-SSSPs in parallel.
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SSSP : Dijkstra vs BellmanFordMoore
● Runs in time O((m+n) log n)

● Uses Fibonacci Min-Heap

● At each iteration, 
– Pick up node from Q
– RELAXes all its neighbours

● Runs in time O(nm)

● No heap

● All edges are RELAXed  at most (n-1) 
times

  

In parallel setting it is difficult use Queue RELAX all edges
Launched using n threads or m

For i from 1 to n-1:
   For each edge (u, v) in E
           RELAX(u,v, W(u,v))
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Dijkstra and its RELAX operations
INPUT: G(V,E,W), src
OUTPUT: d[], p[]

INITIALIZE-SINGLE -SOURCE (G, src)
Q = G.V
while(! Q.empty() ) {
   u = ExtractMin(Q);
   For v in Adj[u]
      RELAX(u,v, W)
}

RELAX(u, v, W){
    If u.d + W(u,v) < v.d {
        v.d =u.d + W(u,v)
        v.p = u
    }
}

INITIALIZE-SINGLE -SOURCE(G , src)
   For each v in G.V {
       v.d = ∞
       v.p = NIL
}
src.d = 0

Source : CLRS book 
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CPU Implementation - Optimization
● SSSP-halt optimization

…

3
2

k
Halt SSSP when all terminals are visited

Dijkstra Property: when a node u is picked from Q for 
processing then the distance[u] is saturated using 

all the visited nodes.

Steps
of
SSSP
execution

Fig. 4 SSSP-halt visualization 

s
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Design choice for parallelization

CPU GPU-OPTGPUv1

Fig. 5 Design choices.
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GPU Implementation - SSSP 
● n-threads 
● One thread for each node
● Performs RELAX in parallel 
● RELAXes its neighbours
● Till there is no change1 2 n

Every node/thread
pushes the data

to neighbours

Fig. 6 push SSSP
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KMB Algorithm G(V,E,W,L)
MAIN
For s in L {
   ThdsPerBlk = 512; // or 1024
   Blks = n⌈n /ThdsPer Blk ;⌉;
   do {
       INIT-KERNEL<Blks,ThdsPerBlk>(s, ds , ps , n);
       SSSP-KERNEL<Blks,ThdsPerBlk>(.., s, ds , ps , changed, n);
       CopyTo(DArray, ds ); // From Device to Host.
       CopyTo(PArray, ps ); // From Device to Host.
       CopyTo(hChanged, changed); // From Device to Host.
   }while (hChanged);
}

● Note we reuse d[] p[] across 
iterations

● We need the p[] for knowing 
the intermediate vertices in 
the shortest path
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KMB Algorithm G(V,E,W,L)
SSSP-KERNEL(..,s, ds , ps , changed, n) {
u = tid  // compute tid;
If tid < n  {
    For v ∈ adjacent[u] { // Using CSR arrays
         // Relax Operation (u, v, W(u,v))
         newCost = ds[u] + W(u, v) ;
         old = ds[v];
         If newCost < old         
               Atomic-MIN(ds[v], newCost);
         // Updates Parent array
        If Atomic-MIN is success {
              ps[v] = u;
              changed = true;
        }
} }

Note :

● Parent of v should be updated  
if the Atomic-MIN is success

Is it enough?
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Parent update - Challenge
<snip>
..
newCost = ds[u] + W(u, v) ;

old = ds[v];

If newCost < old         
Atomic-MIN(ds[v], newCost);

// Updates Parent array
If Atomic-MIN is success {

ps[v] = u;

changed = true;
}
</snip>

1 2

v
10 57

Two threads want 
to update distance of their

common neighbour v Fig. 7 Challenges in parent update
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<snip>
newCost = d[u] + W (u, v) ;
old = d[v];
If newCost < old 
   oldA=Atomic-MIN(d[v], newCost);
 
// Atomic-MIN is Success   
If oldA != old  {
   // Update’s Parent array
    p[v] = u;
    changed = true;
}
</snip>

Parent update - Challenge

newCost=7
old=10

d[v]=7 //oldA=10

p[v] =1

newCost=5
old=10

d[v]=5 //oldA=7

p[v]=2

Wrong! How to update both distance and parent at the same time? Locks?

Time

It is a challenge to find which “thread” updated d[v] to the minimum

1 2

v
10

57

Thread 1 Thread 2

Shared
d[], p[]
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Synchronization optimization • Pull

1 2 2

<snip>
newCost = d[v] + W (tid, v) ;
old = d[u];
If newCost < old {
   d[u] = newCost
   p[u] = tid;
   changed = true;
}

</snip>
No Atomics

Parent update is easy

Because, one thread is writing to an index

Fig. 8  Pull-SSSP
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GPU Optimizations
● Synchronization

– Push
– Pull

● Computation
– Data-driven 
– Edge-based
– Controlled Computation unrolling

● Δ2

● 2Δ 
● tΔ

● Memory
– Shared memory 

Δ – max degree of the graph
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GPU Optimizations
● Synchronization

– Push
– Pull

● Computation
– Data-driven 
– Edge-based
– Controlled Computation unrolling

● Δ2

● 2Δ 
● tΔ

● Memory
– Shared memory 

Δ – max degree of the graph

These worked 
best for us!



17-Mar-2022 Accelerating Computation of Steiner Trees on GPUs | Rajesh's Seminar-2 Talk 29/41

Compute optimization 
● Computation Unrolling 

– Instead of one thread doing Δ work, perform more work per thread
– Update also neighbours of neighbours  (Δ2)
– Repeat the work; Say 2 times or t times (2Δ or tΔ);  e.g.  we do pull 3 times in the kernel –  3-pull
– Empirically, we achieved best performance when t=3

● Data-driven
– Needs Worklist (WL)
– Active/Change nodes are inserted into WL
– Only size of WL many threads launched
– Need synchronization while inserting nodes in WL

● Edge based optimization
– m-threads are launched
– RELAXes one edge or a group of edges
– Representation needs to be modified.

Graph algorithms
are memory

bounded
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Memory optimization
● Programmable shared memory can be useful
● When there are multiple reads to DRAM 
● We can move data to shared memory

● For e.g. In 3-pull, we moved CSR AdjList to shared
● As the neighbours AdjList is accessed 3 times
● Of the total 48K per block 
● when using 512 threadPerBlock we have 24 words to store per thread

● Hence,  if degree(node) < 25 we use shared, we move CSR AdjList[node] to Shared
● With shared memory we achieve 25% of improvement in 3-pull 

GPU
core

Shared
Memory

DRAM
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Double-barrel approach
● SSSP happens in parallel
● To run two SSSP, we have to run one after the other
● Instead we use Double-barrel approach
● This can be generalized (p-SSSP)

Image source: https://stock.adobe.com/

In our Double-barrel approach, we run two 
individually parallel SSSPs also in parallel.
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Double-barrel approach
Result Array: d[n] 
Initialize(d=INTMAX )  
d[src] = 0
FixedPoint{

doRELAX(G, d, changed ...);
}

∞

0

∞

1

∞

2

∞ ∞

s
1

∞ ∞ ••• ∞ ∞ ∞ ∞

n-1

∞

n

∞ ∞ ∞ ∞ ∞ ∞ ∞

s
2

∞ ∞

    2n-1

0 0∞ •••∞

2n

d array

••• • • • • • •

Result Array: d[2n] 
Initialize(d=INTMAX) 
d[src1] = 0; d[n+src2] = 0
FixedPoint{

doRELAX(G, dist, changed, ...);
}

Fig. 9 Double-barrel approach.
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Key takeaways so far
● Solving Steiner Tree Problem is NP-hard

● KMB Algorithm, a 2-approximation algorithm

● CPU implementation has SSSP-halt optimization

● SSSP with parent array update was challenging

● Pull-based SSSP is great for KMBGPU even without SSSP-halt

● Parallel-SSSPs in parallel (p-SSSP)
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Experimental setup & Graphsuite
CPU  

● Intel(R) Xeon(R) E5-2640 v4 @ 2.40GHz 
● 64GB RAM 

GPU
● Tesla P100 @ 1.33 GHz
● 12GB global memory 

● CentOS Linux release 7.5
● GCC 7.3.1 with O3
● CUDA 10.2 

Graphsuite
– Total 14 Graphs

● 11 from PACE Challenge  [PACE2018]
● 2 from SteinLib
● 1 from SNAP

– n  : 17K  –  235K 
– m : 27K  – 498K
– k :  0.1K – 6K

Baselines
– PACE’18 Winner – CIMAT [PACE2018]
– ODGF’s KMB/JEA [BC19]

● PACE 2018 - https://pacechallenge.org/2018/steiner-tree/
● CIMAT Team - https://github.com/HeathcliffAC/SteinerTreeProblem
● S. Beyer and M. Chimani,  Strong Steiner Tree Approximations in Practice, JEA 2019.

https://github.com/HeathcliffAC/SteinerTreeProblem
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Experiments – Comparison of solution quality

Solution Quality

● KMBGPU-OPT, KMBCPU and JEA are similar vs OPT 

● KMBGPU-OPT and KMBCPU are better than PACE on all instances

STP is an NP-hard, 
our algorithm finds a solution 

closer to optimum.

Why?

● CIMAT Team - https://github.com/HeathcliffAC/SteinerTreeProblem
● S. Beyer and M. Chimani,  Strong Steiner Tree Approximations in Practice, JEA 2019.
●

https://github.com/HeathcliffAC/SteinerTreeProblem
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Experiments - Speed-up 

t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12 t13 t14 avg
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Sp

ee
d-

up
 

Fig. 10 Speed-up comparisons of the implementations (higher is better). JEA timed-out on t11

Takeaway: KMBCPU and KMBGPUOPT is better than JEA
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Comparison of GPU time with Shared memory

t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12 t13 t14 avg
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Fig. 11 Comparison of 1-Pull, 3-Pull, Double-barrel & p-SSSP+3-Pull+shared memory 
(smaller is better). Note: 1-Pull is KMBGPU whereas p-SSSP-3pull-ShMem is KMBGPU-OPT 

Takeaway: Combining GPU optimizations p-SSSP, 3-Pull & Shared memory performs best.
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Comparison of p-SSSP 
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Fig. 12 KMBGPU with varying p-SSSP for the same graphs t14 (Smaller is better).

Takeaway: As we increase the #parallel SSSPs it reaches a point and then increases. 
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Experiments – Scalability of GPU and CPU

Fig. 13 Scalability plot on t14 with increasing terminal size (lower is better)
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Takeaway: KMBGPU-OPT scales better than KMBCPU
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Summary
● SSSP halt-optimization benefits CPU.
● Pull and p-SSSP optimization benefits GPU.
● Our output Steiner tree can be used as initial tree for other local search algorithms.
● Our technique is applicable when multiple parallel instances of an operator are used.

Future work
● KMBCPU can be extended to multicore-CPU.
● KMBGPU-OPT can be extended to multi-GPU.

● Capacitated Vehicle Routing Problem
● Build a GPU graph library for aiding NP-Hard problems.

Thank you.
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