Effective Parallelization of the Vehicle Routing Problem

<u>**Rajesh Pandian M**</u>[†], Somesh Singh^{*}, Rupesh Nasre[†] & N.S.Narayanaswamy[†]

[†]Indian Institute of Technology Madras, India. *CNRS and LIP, France.

Capacitated Vehicle Routing Problem (CVRP)

<u>Input</u>: Given *n* nodes (single Depot and customers) with their coordinates (x_i, y_i) and demands $d_i > 0$ for $i \in n$, Vehicle capacity *C*. Node 0 is Depot and has zero demand.

<u>Output:</u> Set of routes serving all the customers respecting the vehicle capacity from/to Depot.

<u>Goal</u> : Minimize total distance travelled.

Effective Parallelization of the Vehicle Routing Problem |

GECC0 2023

Motivation

Current state-of-the-art

- work only on smaller instances
- has a large solution Gap.
- takes a lot of time.

Instance	Number of	Time (s)	
	customers	Base2	Base1
Flanders2	30,000	8,355	2,534
Flanders1	20,000	7,768	2,031
Brussels1	15,000	7,164	871

Table 1: State-of-the-art GPU methods are time-consuming.

RQ3. Design Parallelization friendly algorithms?

GECCO 2023

RQ2. Can we reduce Gap on large instances?

Our ParMDS

- Serial and <u>Par</u>allel implementation
- Combining <u>M</u>ST and <u>D</u>FS
- Uses Local-search approach
- Uses Randomization approach

Baseline 1: P. Yelmewad and B. Talawar. Parallel Version of Local Search Heuristic Algorithm to Solve Capacitated Vehicle Routing Problem, Cluster Computing, 2021.

Baseline2: M. Abdelatti and M. Sodhi. An improved GPU-accelerated heuristic technique applied to the Capacitated Vehicle Routing Problem, GECCO, 2020.

17-Jul-2023

Effective Parallelization of the Vehicle Routing Problem

Overview - ParMDS

GECC0 2023

Overview - ParMDS

Effective Parallelization of the Vehicle Routing Problem

GECC0 2023

ParMDS on an example input instance with n = 7 and Vehicle Capacity = 5.

Effective Parallelization of the Vehicle Routing Problem | GECCO 2023

Example - DFS and Randomization

Intra-route optimization - 20pt

Effective Parallelization of the Vehicle Routing Problem | GECCO 2023

Experiments

- 130 Instances of CVRPLIB
 - Х —
 - Golden
 - Belgium
 - Others
- Intel Xeon CPU E5-2640 v4
 - 40 cores
 - Clock 2.4 Ghz
 - RAM 64 GB
- **Baselines on GPU**
 - NVIDIA's Tesla P100
 - 3584 cores & 12GB global memory —
 - **CUDA 11.5**
- Our Code uses
 - SeqMDS: GCC 9.3.1
 - ParMDS: nvc++ compiler NVIDIA's HPC SDK 22.11

Superloop and Refine step

0

Х

Golden Belgium Others

GECCO 2023

Avg

Max

Effective Parallelization of the Vehicle Routing Problem

Summary

- GPU parallelization has limitations on larger instances
 - Takes longer time
 - Solution Gap is large
- Our technique combines simpler algorithms/techniques
 - MST and DFS
 - Uses randomization
 - Uses parallelization
 - Open source code
- Our parallelization technique can be extended to other iterative local-search / genetic algorithms

Future Directions

ParMDS can be extended

- to use OpenACC for running on GPUs
- to incorporate direction-aware local-search
- to integrate inter-route optimizations

https://github.com/mrprajesh/parMDS

Thank you

Looking for Postdoc

GECCO 2023

