
Effective Parallelization
of the Vehicle Routing Problem

Rajesh Pandian M†, Somesh Singh*, Rupesh Nasre† & N.S.Narayanaswamy†

 2023

†Indian Institute of Technology Madras, India.
*CNRS and LIP, France.

17-Jul-2023 Effective Parallelization of the Vehicle Routing Problem | GECCO 2023 2/10

Capacitated Vehicle Routing Problem (CVRP)
Input : Given n nodes (single Depot and customers) with their coordinates (xi,yi) and

 demands di > 0 for i n, ∈ Vehicle capacity C. Node 0 is Depot and has zero demand.
Output: Set of routes serving all the customers respecting the vehicle capacity from/to Depot.
Goal : Minimize total distance travelled.

0

1 4

2 3

0

2 2

11

0

1 4

2 3

0

2 2

11

1 20 0

3 40 0

Demand

Depot
Notice

the demand

Vehicle Capacity: 3 units

route1

route2

If Capacity = sum of demands di ,
CVRP Travelling Salesman Problem➜

NP-Hard

17-Jul-2023 Effective Parallelization of the Vehicle Routing Problem | GECCO 2023 3/10

Motivation
Current state-of-the-art
– work only on smaller instances
– has a large solution Gap.
– takes a lot of time.

Our ParMDS
– Serial and Parallel implementation
– Combining MST and DFS
– Uses Local-search approach
– Uses Randomization approach

RQ1. Can we invent
a simpler algorithm?

 RQ2. Can we reduce Gap
 on large instances?

RQ3. Design Parallelization
friendly algorithms?

Base2 Base1

P. Yelmewad and B. Talawar. Parallel Version of Local Search Heuristic Algorithm to Solve Capacitated Vehicle Routing Problem, Cluster Computing, 2021.

M. Abdelatti and M. Sodhi. An improved GPU-accelerated heuristic technique applied to the Capacitated Vehicle Routing Problem, GECCO, 2020.

Baseline1:
Baseline2:

Gap=
Z S−Z BKS
Z BKS

×100

17-Jul-2023 Effective Parallelization of the Vehicle Routing Problem | GECCO 2023 4/10

Overview - ParMDS
Convert to Graph

MST

Randomize the order
of the Neighbours

DFS traversal

Convert to Route

Refine Route

CVRP as
a graph problem

Input

Output

17-Jul-2023 Effective Parallelization of the Vehicle Routing Problem | GECCO 2023 5/10

Convert to Graph

MST

Randomize the order
of the Neighbours

DFS traversal

Convert to Route

Refine Route

Repeat a fixed number
of iterations.

Superloop

Parallelization

Overview - ParMDS

17-Jul-2023 Effective Parallelization of the Vehicle Routing Problem | GECCO 2023 6/10

Example - Overview

ParMDS on an example input instance with n = 7 and Vehicle Capacity = 5.

Closer to
Optimal Cost

17-Jul-2023 Effective Parallelization of the Vehicle Routing Problem | GECCO 2023 7/10

Example – DFS and Randomization

Takeaway: Randomizing neighbours of MST may yield a different DFS ordering. Hence, a different route!

0

1 2

3 4 5

6

0 1 3 4 6 2 5

0

2 1

131

2

(a)

r1

74.19

π

Cost:

r2 r3

0

1 2

4 3 5

6

0 1 4 6 3 2 5

0

2 1

113

2

(b)

r1

78.19

r2 r3

0

2 1

5 3 4

6

0 2 5 1 3 4 6

0

1 2

311

2

(c)

 r1

67.65

 r2

0

2 1

5 4 3

6

0 2 5 1 4 6 3

0

1 2

131

2

(d)

r1

83.65

r2 r3

Vehicle
Capacity = 5.

17-Jul-2023 Effective Parallelization of the Vehicle Routing Problem | GECCO 2023 8/10

Intra-route optimization - 2Opt
0

2
1

5 3 4

6

0 2 5 1 3 4 6

0

1 2

311

2

(a)

 r1

67.65Cost:

 r2

(b)

0 2 5 1 3 4 6

0

2
1

5 3 4

6

0

1 2

31
1

2

0 2 5 3 1 4 6 66.13

67.65
 r1 r2

 r1 r2

Before After

In Parallel!

17-Jul-2023 Effective Parallelization of the Vehicle Routing Problem | GECCO 2023 9/10

Experiments
● 130 Instances of CVRPLIB

– X
– Golden
– Belgium
– Others

● Intel Xeon CPU E5-2640 v4
– 40 cores
– Clock 2.4 Ghz
– RAM 64 GB

● Baselines on GPU
– NVIDIA’s Tesla P100
– 3584 cores & 12GB global memory
– CUDA 11.5

● Our Code uses
– SeqMDS: GCC 9.3.1
– ParMDS: nvc++ compiler NVIDIA’s HPC SDK 22.11

Speedup of ParMDS vs. baselines

Gap at the end of : 1st iteration,
 Superloop and Refine step

Check out
our paper

for more detailed
analysis

17-Jul-2023 Effective Parallelization of the Vehicle Routing Problem | GECCO 2023 10/10

Summary
● GPU parallelization has limitations on larger instances

– Takes longer time
– Solution Gap is large

● Our technique combines simpler algorithms/techniques
– MST and DFS
– Uses randomization
– Uses parallelization
– Open source code

● Our parallelization technique can be extended to other iterative local-search / genetic algorithms

Future Directions
ParMDS can be extended

● to use OpenACC for running on GPUs
● to incorporate direction-aware local-search
● to integrate inter-route optimizations

https://github.com/mrprajesh/parMDS

Thank you 🙏

Looking for Postdoc🎓

https://github.com/mrprajesh/parMDS

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10

